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THE GENERATOR AND QUANTUM MARKOV SEMIGROUP

FOR QUANTUM WALKS

Chul Ki Ko and Hyun Jae Yoo*

Abstract

The quantum walks in the lattice spaces are represented as unitary evolutions. We

find a generator for the evolution and apply it to further understand the walks. We first

extend the discrete time quantum walks to continuous time walks. Then we construct

the quantum Markov semigroup for quantum walks and characterize it in an invariant

subalgebra. In the meanwhile, we obtain the limit distributions of the quantum walks

in one-dimension with a proper scaling, which was obtained by Konno by a di¤erent

method.

1. Introduction

Quantum walk (QW hereafter) is a quantum analogue of classical random
walk. After it was initiated by Meyer [17], it attracted many interests and there
are many works developing it in mathematically rigorous way on the one hand
and explaining possible practical applications, e.g., in quantum computation (see
[2, 7, 9, 11, 12, 14, 17], and references therein for more details).

QW’s demonstrate non-intuitive behaviour in several ways comparing to
classical random walks. The most outstanding feature is fast di¤using as noted
by many authors: the scaling for the central limit theory is n comparing to

ffiffiffi
n

p
for

classical random walks. It is caused from quantum interference. The super-
position in QW’s is likewise a unique phenomenon that does not exist in classical
random walks.

The aim of this paper is to further investigate the QW’s by their generators.
We find the generator from an evolution map of a QW. As applications we will
first extend the discrete time QW’s to continuous time walks. We also discuss
the quantum Markov semigroup for QW’s. The quantum probabilistic aspect of
the QW’s has been discussed in a separate paper [10]. We remark that there
already have been studies of continuous time QW’s on the graphs [6, 13, 16, 19,
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21], but we emphasize that the extension here is di¤erent from those. It is a
natural extension of the discrete time QW on integer lattices in the sense that it
agrees with the original discrete time QW for integer times. We note that this
concept was already appeared in [8]. Next, not only we construct the quantum
Markov semigroup for QW’s, we also find an invariant subalgebra on which the
dynamics is completely characterized.

Our method is to use Fourier transform, so called a Schrödinger approach,
which was introduced by Ambains et al. [2, 18]. By it we will recover the limit
distributions for QW’s which was concretely studied by Konno [11, 12] via path
integral approach.

This paper is organized as follows. In section 2, we briefly review the QW’s
and find the unitary evolution map of them. Then, we find a scaled limit distri-
butions of QW’s (Theorem 2.1 and Proposition 2.3). In section 3, we observe a
superposition phenomena for a typical Hadamard walk. Then we find a con-
tinuous time extension. In section 4, we discuss the quantum Markov semigroup
for QW’s.

2. 1-dimensional quantum walks

In this section we briefly introduce the 1-dimensional QW’s. We will see
that a QW is a (discrete time) unitary evolution in a suitably chosen Hilbert
space.

2.1. 1-dimensional QW’s
We first introduce the definition of 1-dimensional quantum walks following

[2, 7, 11, 12, 18]. A quantum particle has an intrinsic degree of freedom, called
‘‘chirality’’. This chirality is represented by a 2-dimensional vector: we represent

them in C2 and call the vectors
1

0

� �
and

0

1

� �
the left and right chirality,

respectively. The spatial movement of the particle is given as follows. At time
n A N0 ¼ f0; 1; 2; . . .g, the probability amplitude of finding the particle at site
x A Z with chirality state being left or right is given by a two-component
vector

cnðxÞ ¼
cnð1; xÞ
cnð2; xÞ

� �
A C2:ð2:1Þ

After one unit of time the chirality is rotated by an a priori given unitary matrix
U . According to the final chirality state, if the particle ends up with left
chirality, then it moves one step to the left, and if it ends up with right chirality,
it moves one step to the right. In order to see this dynamics more precisely let
us denote

U ¼ l1 l2

r1 r2

� �
ð2:2Þ
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and define

L ¼ l1 l2

0 0

� �
and R ¼ 0 0

r1 r2

� �
:ð2:3Þ

Then the dynamics for cn ¼ ðcnðxÞÞx AZ is given by

cnþ1ðxÞ ¼ Lcnðxþ 1Þ þ Rcnðx� 1Þ:ð2:4Þ

This dynamics has been investigated by many authors. There are two main
methods to investigate it. One is so called the path integral approach, in which
the explicit probability amplitude is computed by using a great deal of combi-
natorics. This method has been extensively developed by Konno [11, 12]. In
particular, Konno obtained the scaled limit distribution of the QW very con-
cretely. The other method is called the Schrödinger approach, which uses
Fourier transform taking advantage of space-time homogeniety of QW’s. This
approach was well-developed in [2, 7, 8, 18]. In this paper we further develop
the Schrödinger approach to get a unitary evolution map for the QW in a
suitable Hilbert space. Then the generator comes out naturally.

2.2. Evolution of QW’s
For each x A Z, let Hx :¼ C2 be a copy of the chirality space. Let

H :¼ 0
x AZ

Hxð2:5Þ

be the direct sum Hilbert space, on which the evolution of a QW will be
developed. Notice that H is isomorphic to the Hilbert spaces l2ðZ;C2Þ and
l2ðZÞnC2. For each x A Z, let

exðkÞ :¼
1ffiffiffiffiffiffi
2p

p eixk; k A K :¼ ð�p; p�;ð2:6Þ

K being understood as a unit circle in R2. The set fexgx AZ defines an ortho-
normal basis in L2ðKÞ. For each k A K, let hk be a copy of C2 and let

ĤH :¼
ðl
K

hk dkAL2ðK;C2ÞAL2ðKÞnC2ð2:7Þ

be the direct integral of Hilbert spaces. The Fourier transform between l 2ðZÞ
and L2ðKÞ naturally extends to a unitary map from H to ĤH by

c ¼ cð1; xÞ
cð2; xÞ

� �� �
x AZ

A H 7! ĉc ¼ ĉcð1; kÞ
ĉcð2; kÞ

 !( )
k AK

A ĤH;ð2:8Þ

where

ĉcði; kÞ ¼
X
x AZ

cði; xÞexðkÞ; i ¼ 1; 2:ð2:9Þ
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Its inverse is given by ĉc 7! c with

cðxÞ ¼
ð p
�p

1ffiffiffiffiffiffi
2p

p e�ixkĉcðkÞ dk A Hx:

Let us denote by T the left translation in l 2ðZÞ:

ðTaÞðxÞ ¼ aðxþ 1Þ; for a ¼ ðaðxÞÞx AZ:ð2:10Þ

T is a unitary map whose adjoint is the right translation:

ðT �aÞðxÞ ¼ aðx� 1Þ; for a ¼ ðaðxÞÞx AZ:ð2:11Þ

The operator T naturally extends to H ¼ 0
x AZ Hx and for the sake of

simplicity we use the same notation T for the extension. Given an operator
(2� 2 matrix) B on C2, we let

~BB :¼ 0
x AZ

Bð2:12Þ

be the bounded direct sum operator acting on H.
With these preparations we can rewrite the dynamics of a QW as an

evolution map in the Hilbert space H. Notice that the equation (2.4) is the
same as

cnþ1ðxÞ ¼ LðTcnÞðxÞ þ RðT �cnÞðxÞ; x A Z;ð2:13Þ

which we can write in a single equation:

cnþ1 ¼ ð~LLT þ ~RRT �Þcn:ð2:14Þ

It is not hard to see that the operator ~LLT þ ~RRT � is a unitary operator on H.
Thus the solution to (2.14) is easily seen to be

cn ¼ ð~LLT þ ~RRT �Þnc0:ð2:15Þ

This is the time evolution of the QW that we are looking for. One may write
the unitary ~LLT þ ~RRT � as T ~LLþ T � ~RR by noticing ~LLT ¼ T ~LL and ~RRT � ¼ T � ~RR, if
one stresses the order that the movement (space translation) follows the action of
chirality rotation.

Now we find the evolution of the QW in a Fourier transform space. Notice
that the translation operator T is represented as a multiplication operator by e�ik

in the Fourier transform space. Thus, the evolution in (2.15) has the representa-
tion in Fourier transform space as follows:

ĉcnðkÞ ¼ ðe�ikLþ eikRÞnĉc0ðkÞð2:16Þ

¼ e�ikl1 e�ikl2

eikr1 eikr2

� �n
ĉc0ðkÞ:

366 chul ki ko and hyun jae yoo



This representation has been already obtained in [2, 7, 8, 18]. Notice that for
each k A K the matrix

UðkÞ :¼ e�ikl1 e�ikl2

eikr1 eikr2

� �
ð2:17Þ

is a unitary matrix in C2, and hence the evolution in (2.16) is again unitary in ĤH,
as it should be.

The probability density to find out the particle at a site x A Z at time n is
simply

kcnðxÞk
2 ¼ jcnð1; xÞj

2 þ jcnð2; xÞj
2;ð2:18Þ

or it can also be given byð p
�p

1ffiffiffiffiffiffi
2p

p e�ixkĉcnðkÞ dk
����

����
2

¼ 1

2p

( ð p
�p

e�ixkĉcnð1; kÞ dk
����

����
2

ð2:19Þ

þ
ð p
�p

e�ixkĉcnð2; kÞ dk
����

����
2
)
:

Konno has obtained the explicit form of the density (2.18) by using previously
mentioned path integral approach. It uses a good deal amount of combinatorics
and the resulting formula looks rather complicated [11, 12]. Nevertheless, by
using his formula, Konno has successfully obtained the asymptotic distribu-
tions of the scaled QW’s. On the other hand, by using the formula in (2.19),
Ambainis et al. also explained many properties of QW’s [2, 18]. In particular,
when one is interested in the asymptotic behavior of QW’s it turns out that the
formula in (2.19) is extremely convenient because we have a nice tool so called
the method of stationary phase [3, 4]. The asymptotic behavior of the prob-
ability amplitudes by this method was investigated by Ambainis et al. [2, 18].
In the next subsection we will find the limit distribution of the scaled QW by
computing the limit of characteristic functions. We notice that Grimmett et al.
obtained also the weak limit of the scaled QW’s by using the method of moments
in the Schrödinger approach [7]. In [8], Katori et al. further developed this
method and they re-established the limit distribution. The moment problem is
closely related to the interacting Fock spaces via quantum probability theory,
which we have discussed in other paper [10].

2.3. Limit distributions
In this subsection we study the limit distribution of the scaled QW. Let

fX ðU ;c0Þ
n gnb0 be the random variables distributed on the integer space Z

according to the QW whose evolution is given by (2.15). That is,

PðX ðU ;c0Þ
n ¼ xÞ ¼ kcnðxÞk

2:ð2:20Þ
Before we state the result we notice that a multiplication by a phase factor to U
does not a¤ect the distribution of fX ðU ;c0Þ

n g. Thus, for a technical reason in the
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proof, we will assume that

det U ¼ 1:ð2:21Þ

Thereby we caution the reader that if the matrix U in a given model does not
satisfy (2.21), we will first adjust it by multiplying some phase factor so that
(2.21) is satisfied.

Theorem 2.1. There is a random variable ZðU ;c0Þ on the real line such that in
distribution

lim
n!y

X
ðU ;c0Þ
n

n
¼ Z ðU ;c0Þ:ð2:22Þ

If l1l2r1r2 0 0, the distribution mðU ;c0Þ of ZðU ;c0Þ has a density function: it is
supported on ð�jl1j; jl1jÞ and has the form:

rðU ;c0ÞðyÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jl1j2

q
pð1� y2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jl1j2 � y2

q gðU ;c0ÞðyÞð2:23Þ

with gðU ;c0ÞðyÞ being a dependent part to the initial condition. On the other hand,
if one of l1 or l2 is zero, then the distribution mðU ;c0Þ is a point mass: for

c0 ¼
c0ð1; xÞ
c0ð2; xÞ

� �� �
x AZ

,

mðU ;c0Þ ¼ ð
P

x AZ jc0ð1; xÞj
2Þd�1 þ ð

P
x AZ jc0ð2; xÞj

2Þd1; if l2 ¼ 0

d0; if l1 ¼ 0

�
:ð2:24Þ

Remark 2.2. (a) The function gðU ;c0ÞðyÞ depends heavily on the initial state
c0. In Proposition 2.3 below we will see a concrete form of gðU ;c0ÞðyÞ for QW’s
that are initially localized at the origin. The above formula was first shown
by Konno [11, 12]. Grimmett et al. also obtained the formula for the (biased)
Hadamard QW’s [7]. Katori et al. recovered it from the method of moments
[8]. Recently Ahlbrecht et al. discussed the asymptotic behaviour or QW’s by
using a perturbative method [1].

(b) In relevance with the limit theory, we would like to mention some recent
results. Sunada and Tate investigated the limit theory of the quantum walk
(starting at one point, say the origin) much more closely dividing the region
into three areas: allowed region (inside the interval ð�jl1j; jl1jÞ), around the wall
ðjxj@Gjl1jÞ, and hidden region ðjl1j < jxj < 1Þ. In particular, for the hidden
region, they obtained the large deviation principle, i.e., the probability in the
hidden region decreases exponentially with a concrete rate function. See [22]
for the details. In [15], Machida investigated that by allowing various initial
conditions, in the limit we can recover some of the well known distributions such
as semicircular law, arcsine law, Gaussian, and uniform distributions.
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The proof of Theorem 2.1 will be given in the Appendix. Although it was
shown already, our Shrödinger approach should be a good contrast to the path
integral approach. As mentioned, the method of stationary phase plays the key
role for asymptotics of the integral of rapidly varying functions.

Next we consider the situation that the particle is initially located at the
origin. We will get more concrete form of the limit density function.

Proposition 2.3. Suppose that the initial condition is a qubit state
a

b

� �
,

a; b A C, jaj2 þ jbj2 ¼ 1, located at the origin. Then the density of the limit distri-
bution in Theorem 2.1 in the case l1l2r1r2 0 0 is given by the following formula.

rðU ;c0ÞðyÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jl1j2

q
pð1� y2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jl1j2 � y2

q ð1� bðU ;c0ÞyÞ1ð�jl1j; jl1jÞðyÞ

with

bðU ;c0Þ ¼ jaj2 � jbj2 þ l1l2abþ l1l2ab

jl1j2
:

Remark 2.4. The formula in Proposition 2.3 is exactly what Konno ob-
tained by the path integral approach [11, 12].

The proof of Proposition 2.3 will also be given in the Appendix.

3. Continuous time QW’s

In this section we extend the discrete time QW’s to continuous time QW’s.
It is done from our development in Section 2 and we remark that it is a di¤erent
kind of version for continuous time QW’s from those appearing in the litera-
ture [13, 16, 19]. As we have seen in the last section, the distribution of QW’s
depends heavily on the initial condition. In particular, the QW’s reveal the
superposition of states. In the next subsection we will see the superposition
phenomena in the simplest case of Hadamard walk.

3.1. Superposition of QW’s
Let us consider the Hadamard QW with the unitary matrix for the rotation

of chirality given by

U ¼ 1ffiffiffi
2

p 1 �1

1 1

� �
:ð3:1Þ

We notice here that we have changed the rows of the matrix from the usual
Hadamard matrix. It is just to make det U ¼ 1 and it only makes the exchange
of left and right movements of the quantum walker. We will consider for the
initial conditions not only the case that the walker starts at the origin but also the
case that it is spatially distributed.
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Figure 3.1 shows the spatial distribution of the QW at time n ¼ 1000 starting

at the point x ¼ 10 with initial qubit state
0

1

� �
, i.e., c0 ¼

0

1

� �
d10ðxÞ

� �
x AZ

, or

ĉc0ðkÞ ¼
1ffiffiffiffiffiffi
2p

p 0

e10ik

� �
. Similarly Figure 3.2 shows the distribution at n ¼ 1000

with c0 ¼
1

0

� �
d�10ðxÞ

� �
x AZ

. Figure 3.3 shows the distribution at n ¼ 1000

with c0 ¼
0
1ffiffiffi
2

p

0
@

1
Ad10ðxÞ þ

1ffiffiffi
2

p

0

0
@

1
Ad�10ðxÞ

8<
:

9=
;

x AZ

, the mixture of the previous two

examples. It shows the superposition of the QW. Finally Figure 3.4 shows the

distribution at n ¼ 1000 for c0 ¼
0
1ffiffiffi
2

p

0
@

1
Ad0ðxÞ þ

1ffiffiffi
2

p

0

0
@

1
Ad0ðxÞ

8<
:

9=
;

x AZ

. We see

Figure 3.1 Figure 3.2

Figure 3.3 Figure 3.4
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that if it were the classical random walk, then the distribution for the initial
condition in Figure 3.3 would be the mean of the distributions of the Figure 3.1
and 3.2. But the distribution for the QW is totally di¤erent from this behavior
and the result in Figure 3.3 shows that in QW’s the walks have interference
to each other, like in a two slit experiment in quantum mechanics. Figure 3.4
shows that it is still di¤erent from the behavior of the QW who starts at the
origin with mixed qubit state of the two walkers of Figure 3.3. Notice that the
two walkers positioned at x ¼ 10 and x ¼ �10 might be viewed as positioned
‘‘almost’’ at the origin if one looks at them from a ‘‘long’’ distance of size 1000.
But the results of Figure 3.3 and 3.4 show that it is di¤erent from the intuition.

3.2. Continuous time QW’s
We recall the evolution of QW in (2.16):

ĉcnðkÞ ¼ UðkÞnĉc0ðkÞ;
where

UðkÞ ¼ e�ikl1 e�ikl2

eikr1 eikr2

� �
:ð3:2Þ

By (A.7) the unitary matrix UðkÞ is diagonalized as

UðkÞ ¼ Sðk � y1Þ
eigðk�y1Þ 0

0 e�igðk�y1Þ

� �
Sðk � y1Þ�1:

Thus we can rewrite it as

UðkÞ ¼ eiHðkÞ;ð3:3Þ

where HðkÞ is a self-adjoint operator defined by

HðkÞ ¼ Sðk � y1Þ
gðk � y1Þ 0

0 �gðk � y1Þ

� �
Sðk � y1Þ�1:ð3:4Þ

The evolution of QW can now be denoted by

ĉcnðkÞ ¼ einHðkÞĉc0ðkÞ:ð3:5Þ

Now it is strightforward to extend the QW to a continuous time QW:

Definition 3.1. Let U be a 2� 2 unitary matrix. The continuous time
QW on Z is defined by the unitary evolution (in Fourier space) defined by

ĉctðkÞ ¼ eitHðkÞĉc0ðkÞ;ð3:6Þ

where HðkÞ is the self-adjoint operator given in (3.4).

Remark 3.2. (a) As mentioned before, this continuous extension of QW is
di¤erent from the usual ones on the graphs, where the generator comes from the
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discrete Laplacian. Moreover, the intrinsic chiral state is not concerned in those
models, but here the continuous time QW has still the chiral states.

(b) From (3.6), one notices that the quantum walk unitary evolution satisfies

the Schrödinger equation (in the Fourier transform space ĤH ¼ L2ðK;C2Þ):

qĉct

qt
¼ iHĉct; ĉct A ĤH;ð3:7Þ

where the Hamiltonian operator H is given by

H ¼
ðl
K

HðkÞ dk:ð3:8Þ

If we pull back the equation in the real Hilbert space H ¼ l 2ðZ;C2Þ, then it is
written as

qct

qt
¼ iKct; ct A H;ð3:9Þ

where the Hamiltonian operator K works as

ðKcÞðxÞ ¼ 1ffiffiffiffiffiffi
2p

p
ð p
�p

e�ixkHðkÞĉcðkÞ dk; c A H;

where ĉc is the Fourier transform of c.

Example 3.3. We consider again the Hardamard walk of the previous
subsection but in the continuous time. We take the initial condition of Figure

3.3, i.e., c0 ¼
0
1ffiffiffi
2

p

0
@

1
Ad10ðxÞ þ

1ffiffiffi
2

p

0

0
@

1
Ad�10ðxÞ

8<
:

9=
;

x AZ

, or ĉc0ðkÞ ¼
1

2
ffiffiffi
p

p e�10ik

e10ik

� �
.

Figure 3.5 shows a series of snapshots of the distribution of X
ðU ;c0Þ
t at times

t ¼ 99:25; 99:5; 99:75, and 100.

4. Quantum Markov semigroup for QW’s

In this section we study the quantum Markov semigroup [20] associated to
the continuous time QW’s. The notion of a quantum Markov semigroup arose
to describe the irreversible evolution of an open quantum system. A quantum
Markov semigroup is a semigroup of completely positive, identity preserving,
normal linear maps on the algebra of all bounded linear operators on a Hilbert
space. Here we restrict ourselves to the evolution of observables in a closed
quantum system. For the details, we refer to [5] and references therein.

It turns out to be convenient to work on the Fourier transform Hilbert space
ĤH ¼

Ðl
K

hk dk, where hk is a copy of C2 for each k A K ¼ ð�1; 1�, considered as
a unit circle in R2. Let MHBðĤHÞ be a Banach subalgebra consisting of the
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operators

A :¼
ðl
K

AðkÞ dk A M;ð4:1Þ

where AðkÞ is a 2� 2 matrix for each k A K and they satisfy

sup
k

kAðkÞk < y:

Given a unitary matrix U ¼ l1 l2

r1 r2

� �
, recall the unitary matrix UðkÞ in (3.2).

Notice that it defines a unitary operator on ĤH, belonging to M, via the formÐl
K
UðkÞ dk in the representation of (4.1). Recall the operator HðkÞ in (3.4).

By taking normalized eigenvectors of UðkÞ we can take SðkÞ in (3.4) as a unitary
operator (see (A.6)):

SðkÞ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jaþðkÞj2

q 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ja�ðkÞj2

q
aþðkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ jaþðkÞj2
q a�ðkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ja�ðkÞj2
q

0
BBBBB@

1
CCCCCA;ð4:2Þ

Figure 3.5
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where

aGðkÞ ¼ ieiðkþy1�y2Þðjl1j=jl2j sin kG
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðjl1j=jl2j sin kÞ2

q
Þ:ð4:3Þ

In the above y2 A K is such that l2 ¼ jl2jeiy2 and we have used the relation
cos gðkÞ ¼ jl1j cos k. Then HðkÞ is given by

HðkÞ ¼ Sðk � y1Þ
gðk � y1Þ 0

0 �gðk � y1Þ

� �
Sðk � y1Þ�:ð4:4Þ

Because cos�1jl1ja gðkÞa p� cos�1jl1j uniformly for k A K, the operator norm
kHðkÞk (as an operator on C2) is bounded by p� cos�1jl1j uniformly for k A K.
Thus the self-adjoint operator H :¼

Ðl
K
HðkÞ dk is a bounded operator on ĤH and

belongs to M. We define a semigroup Vt on BðĤHÞ by

VtðAÞ :¼ eitHAe�itH ; A A BðĤHÞ:ð4:5Þ

Notice that Vt has the representation

VtðAÞ ¼ etLðAÞ;ð4:6Þ

where the generator L A BðĤHÞ is defined by

LðAÞ :¼ i½H;A�:ð4:7Þ

By the way that the operator H is defined, it is clear that Vt leaves the
subalgebra M invariant. Moreover, if A A M is represented by A ¼

Ðl
K
AðkÞ dk,

then

VtðAÞ ¼
ðl
K

Vk; tðAðkÞÞ dk;ð4:8Þ

where

Vk; tðAðkÞÞ ¼ eitHðkÞAðkÞe�itHðkÞ ¼ etLk ðAðkÞÞ;ð4:9Þ

with the local generator Lk defined by

LkðAðkÞÞ ¼ i½HðkÞ;AðkÞ�:ð4:10Þ

The semigroup fVtgtb0 is a quantum Markov semigroup on BðĤHÞ [20]. In
particular it preserves the identity and positivity. Our main purpose in this
section is to characterize the action of the semigroup fVtgtb0 on the invariant
subalgebra. For it let us recall the Pauli matrices:

s0 ¼
1 0

0 1

� �
; s1 ¼

0 1

1 0

� �
; s2 ¼

0 �i

i 0

� �
; s3 ¼

1 0

0 �1

� �
:
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Theorem 4.1. For each k A K, there is a 3� 3 unitary matrix WðkÞ such

that by defining CðkÞ :¼ WðkÞ
0 0 0

0 2gðkÞ 0

0 0 �2gðkÞ

0
B@

1
CAWðkÞ�, we have

Vk; tðs0Þ ¼ s0; and

Vk; tðs1Þ
Vk; tðs2Þ
Vk; tðs3Þ

0
B@

1
CA¼ eiCðk�y1Þt

s1

s2

s3

0
@

1
A:

Therefore, for each A A M of the form in (4.1) we have

VtðAÞ ¼
ðl
K

X3
l¼0

alðkÞVk; tðslÞ dk;

where the coe‰cients are such that AðkÞ ¼
P3

l¼0 alðkÞsl for each k A K.

Proof. By direct computation, we can rewrite HðkÞ as

HðkÞ ¼ gðk � y1ÞSðk � y1Þs3Sðk � y1Þ�ð4:11Þ

¼ gðk � y1Þ
X3
l¼1

hlðk � y1Þsl ;

with

h1ðkÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðjl1j=jl2j sin kÞ2
q ð�sinðk þ y1 � y2ÞÞ;ð4:12Þ

h2ðkÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðjl1j=jl2j cos kÞ2
q ðcosðk þ y1 � y2ÞÞ;

h3ðkÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðjl1j=jl2j sin kÞ2
q ð�jl1j=jl2j sin kÞ:

Notice that

d

dt
Vk; tðBÞ ¼ Vk; tðLkðBÞÞ ¼ iVk; tð½HðkÞ;B�Þ

for all 2� 2 matrix B. From this and (4.11), and by using the commutation
relations of Pauli matrices, we have

d

dt
Vk; tðs0Þ ¼ 0;ð4:13Þ

d

dt

Vk; tðs1Þ
Vk; tðs2Þ
Vk; tðs3Þ

0
B@

1
CA¼ 2

h1ðk � y1Þ
h2ðk � y2Þ
h3ðk � y1Þ

0
B@

1
CA�

Vk; tðs1Þ
Vk; tðs2Þ
Vk; tðs3Þ

0
B@

1
CA;
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where the product in the second line means the vector product of three dimen-
sional vectors. It is easy to solve the linear equation (4.13):

Vk; tðs0Þ ¼ s0ð4:14Þ

Vk; tðs1Þ
Vk; tðs2Þ
Vk; tðs3Þ

0
B@

1
CA ¼ Wðk � y1Þ

1 0 0

0 e2gðk�y1Þit 0

0 0 e�2gðk�y1Þit

0
B@

1
CAWðk � y1Þ�

s1

s2

s3

0
@

1
A;

where WðkÞ is a 3� 3 matrix whose columns are the normalized eigenvectors of
the matrix

0 �2h3ðkÞ 2h2ðkÞ
2h3ðkÞ 0 �2h1ðkÞ
�2h2ðkÞ 2h1ðkÞ 0

0
B@

1
CA;

whose eigenvalues are 0, G2gðkÞi. Now let A ¼
Ðl
K
AðkÞ dk A M. Since the

Pauli matrices together with the identity form a basis of the algebra of 2� 2
matrices there are constants alðkÞ, l ¼ 0; 1; 2; 3, such that AðkÞ ¼

P3
l¼0 alðkÞsl for

each k A K. Thus the evolution of A under Vt is given by

VtðAÞ ¼
ðl
K

Vk; tðAðkÞÞ dkð4:15Þ

¼
ðl
K

X3
l¼0

alðkÞVk; tðslÞ dk;

with Vk; tðslÞ, l ¼ 0; 1; 2; 3, being given in (4.14). It completely characterizes the
action of the quantum Markov semigroup on M. r

Acknowledgments. We thank the anonymous referee for valuable comments.
We are grateful to Boyoon Seo for helping us with the graphs.

A. Appendix: Limit distributions

In this appendix, we will prove Theorem 2.1 and Proposition 2.3 for the limit
distributions of 1-dimensional QW’s. We start with the case l1l2r1r2 0 0. The
key idea is to diagonalize the matrix UðkÞ defined in (2.17). Recall the unitary

matrix U ¼ l1 l2

r1 r2

� �
. By (2.21), we have the relations:

jl1j2 þ jr1j2 ¼ jl2j2 þ jr2j2 ¼ jl1j2 þ jl2j2 ¼ jr1j2 þ jr2j2 ¼ 1;ðA:1Þ

r1 ¼ �l2; r2 ¼ l1:

Let y1 A K be the unique number satisfying

l1 ¼ jl1jeiy1 :ðA:2Þ
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Then the characteristic equation for UðkÞ reads:

l2 � 2jl1j cosðk � y1Þlþ 1 ¼ 0:ðA:3Þ

Let gðkÞ be the nonnegative symmetric function defined on K ¼ ð�p; p� such
that

cos gðkÞ ¼ jl1j cos k; k A K:ðA:4Þ

In the sequel gðkÞ is also naturally understood as a periodic function of period 2p
defined on R. Then the solutions to (A.3), i.e., the eigenvalues of UðkÞ are

lþðkÞ :¼ eigðk�y1Þ and l�ðkÞ :¼ e�igðk�y1Þ:ðA:5Þ

The corresponding (unnormalized) eigenvectors are:

eþðk � y1Þ1
uþðk � y1Þ
vþðk � y1Þ

� �
:¼

e�iðk�y1Þ

� eiy1

l2
ðjl1je�iðk�y1Þ � eigðk�y1ÞÞ

0
@

1
A;ðA:6Þ

e�ðk � y1Þ1
u�ðk � y1Þ
v�ðk � y1Þ

� �
:¼

e�iðk�y1Þ

� eiy1

l2
ðjl1je�iðk�y1Þ � e�igðk�y1ÞÞ

0
@

1
A:

Then UðkÞ is diagonalized as

UðkÞ ¼ Sðk � y1Þ
eigðk�y1Þ 0

0 e�igðk�y1Þ

� �
Sðk � y1Þ�1;ðA:7Þ

where Sðk � y1Þ is the matrix whose columns are eþðk � y1Þ and e�ðk � y1Þ.
The solution ĉcnðkÞ in (2.16) then becomes

ĉcnðkÞ ¼ Sðk � y1Þ
eingðk�y1Þ 0

0 e�ingðk�y1Þ

� �
Sðk � y1Þ�1ĉc0ðkÞ:ðA:8Þ

In order to get the asymptotic limit (2.22), we use the method of stationary phase,
which we state as a lemma (see [3, 4] for more details.).

Lemma A.1 ([4, p. 220]). Suppose that f A C½a; b� and a A C2½a; b� with a
real. Consider the integral of the form:

IðnÞ :¼
ð b
a

expfinaðtÞg f ðtÞ dt:ðA:9Þ

Suppose further that a 0ðcÞ ¼ 0 in a unique point c A ½a; b� and a 00ðcÞ0 0. Then as
n ! y, we have the asymptotic behavior of IðnÞ:

IðnÞ ¼ expfinaðcÞg f ðcÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

nja 00ðcÞj

s
exp

ipm

4

� �
þ oðn�1=2Þ;ðA:10Þ

where m ¼ sign a 00ðcÞ.

377generator of qw’s



Proof of Theorem 2.1. The case l1l2r1r2 0 0. We compute the character-
istic function of X

ðU ;c0Þ
n =n:

jðU ;c0Þ
n ðxÞ :¼ E½eixX

ðU ;c0Þ
n =n�:ðA:11Þ

By using (2.19), (A.6), (A.8), and by a translation by y1 in the integral, we
get

jðU ;c0Þ
n ðxÞðA:12Þ

¼
X
x AZ

eixx=n

( ð p
�p

1ffiffiffiffiffiffi
2p

p e�ixkðlþðkÞeingðkÞ þ l�ðkÞe�ingðkÞÞ dk
����

����
2

þ
ð p
�p

1ffiffiffiffiffiffi
2p

p e�ixkðmþðkÞeingðkÞ þm�ðkÞe�ingðkÞÞ dk
����

����
2
)
;

where

lþðkÞ ¼ uþðkÞ
1

0

� �
;SðkÞ�1ĉc0ðk þ y1Þ

� 	
;ðA:13Þ

l�ðkÞ ¼ u�ðkÞ
0

1

� �
;SðkÞ�1

ĉc0ðk þ y1Þ
� 	

;

and

mþðkÞ ¼ vþðkÞ
1

0

� �
;SðkÞ�1ĉc0ðk þ y1Þ

� 	
;ðA:14Þ

m�ðkÞ ¼ v�ðkÞ
0

1

� �
;SðkÞ�1ĉc0ðk þ y1Þ

� 	
:

We estimate the asymptotic integrals separately. For that, define

IGðnÞ :¼
ð p
�p

1ffiffiffiffiffiffi
2p

p e�ixkðlGðkÞeGingðkÞÞ dkðA:15Þ

JGðnÞ :¼
ð p
�p

1ffiffiffiffiffiffi
2p

p e�ixkðmGðkÞeGingðkÞÞ dk:

In the sum over x A Z in (A.12), we find the contribution that gives

x

n
¼ yðA:16Þ

for a constant yb 0. The case y < 0 is similar. Then the integral IþðnÞ is
rewritten as

IþðnÞ ¼
ð p
�p

einðgðkÞ�ykÞ 1ffiffiffiffiffiffi
2p

p lþðkÞ dk:ðA:17Þ
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In order to use Lemma A.1 we let

aðkÞ :¼ gðkÞ � yk:ðA:18Þ

Then by definition of gðkÞ in (A.4) we see that at two points c1ðyÞ and c2ðyÞ,
c2ðyÞ ¼ p� c1ðyÞ with 0a c1ðyÞ < p=2, we have

a 0ðc1ðyÞÞ ¼ 0 ¼ a 0ðc2ðyÞÞ:
Also we easily compute

a 00ðciðyÞÞ ¼ ð1� jl1j2Þ
cos gðciðyÞÞ

ðsin gðciðyÞÞÞ3
; i ¼ 1; 2:

Thus, asymptotically,

IþðnÞ@ I
ð1Þ
þ ðnÞeðp=4Þi þ I

ð2Þ
þ ðnÞe�ðp=4Þi

with

I
ð jÞ
þ ðnÞ ¼ 1ffiffiffiffiffiffi

np
p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� jl1j2
q jsin gðc1ðyÞÞj jtan gðc1ðyÞÞj1=2

� einðgðcjðyÞÞ�cjðyÞyÞlþðcjðyÞÞ; j ¼ 1; 2:

Also for those x and n satisfying (A.16)

I�ðnÞ@ I ð1Þ� ðnÞe�ðp=4Þi þ I ð2Þ� ðnÞeþðp=4Þi

with (we use symmetry of g)

I ð jÞ� ðnÞ ¼ 1ffiffiffiffiffiffi
np

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jl1j2

q jsin gðc1ðyÞÞj jtan gðc1ðyÞÞj1=2

� e�inðgðcjðyÞÞ�cjðyÞyÞl�ð�cjðyÞÞ; j ¼ 1; 2:

Similarly we can compute the asymptotics of JGðnÞ. Under the condition (A.16)
we have

JþðnÞ@ J
ð1Þ
þ ðnÞeðp=4Þi þ J

ð2Þ
þ ðnÞe�ðp=4Þi

with

J
ð jÞ
þ ðnÞ ¼ 1ffiffiffiffiffiffi

np
p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� jl1j2
q jsin gðc1ðyÞÞj jtan gðc1ðyÞÞj1=2

� einðgðcjðyÞÞ�cjðyÞyÞmþðcjðyÞÞ; j ¼ 1; 2:

And

J�ðnÞ@ J ð1Þ
� ðnÞe�ðp=4Þi þ J ð2Þ

� ðnÞeþðp=4Þi

with
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J ð jÞ
� ðnÞ ¼ 1ffiffiffiffiffiffi

np
p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� jl1j2
q jsin gðc1ðyÞÞj jtan gðc1ðyÞÞj1=2

� e�inðgðcjðyÞÞ�cjð yÞyÞm�ð�cjðyÞÞ; j ¼ 1; 2:

We now apply these asymptotic estimates to (A.12). Then as a Riemann
integral, the sum over x A Z becomes an integral over y. Moreover, by Lemma
A.1, since the leading term appears at the points that satisfy a 0 ¼ 0, we see
from (A.18) that the integral over y is supported on the range of a 0, which is
½�jl1j; jl1j�. Finally, by using Riemann-Lebesgue lemma, we see that the char-
acteristic function has the limit:

lim
n!y

jðU ;c0Þ
n ðxÞ ¼

ð
eixyrðU ;c0ÞðyÞ dy;ðA:19Þ

where the density function rðU :c0ÞðyÞ is supported in ½�jl1j; jl1j� and is represented
by

rðU ;c0ÞðyÞ ¼ 1

pð1� jl1j2Þ
sin2 gðc1ðyÞÞjtan gðc1ðyÞÞjgðU ;c0ÞðyÞ;ðA:20Þ

with

gðU ;c0ÞðyÞ ¼ fjlþðc1ðyÞÞj2 þ jlþðc2ðyÞÞj2 þ jl�ð�c1ðyÞÞj2ðA:21Þ

þ jl�ð�c2ðyÞÞj2 þ jmþðc1ðyÞÞj2 þ jmþðc2ðyÞÞj2

þ jm�ð�c1ðyÞÞj2 þ jm�ð�c2ðyÞÞj2g:

Let us now compute the factor in the density that does not depend on the
initial condition. By di¤erentiating (A.4) and from the definition of c1ðyÞ we
have

jl1j sin c1ðyÞ ¼ y sin gðc1ðyÞÞ:ðA:22Þ

By (A.4) and (A.22) we get

sin2 gðc1ðyÞÞ ¼
1� jl1j2

1� y2
and cos2 gðc1ðyÞÞ ¼

jl1j2 � y2

1� y2
:ðA:23Þ

Inserting these into (A.20) we get the first half part in the density (2.23). The
remaining part that depends on the initial condition is obtained by direct
computation. We have represented the values of lGðGcjðyÞÞ and mGðGcjðyÞÞ
for j ¼ 1; 2 in Lemma A.3 below. By this we get the remaining part gðU ;c0ÞðyÞ
in (A.21) and the proof for the case l1l2r1r2 0 0 is completed.

The case that l1 ¼ 0 or l2 ¼ 0. In this case the behaviour of QW is very
simple. We can directly compute the distribution of X

ðU ;c0Þ
n from the defining

relation (2.4). Let c0 ¼
c0ð1; xÞ
c0ð2; xÞ

� �� �
x AZ

be the initial condition. We first
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consider the case l2 ¼ 0. Then, at time n, we have

cnð1; xÞ
cnð2; xÞ

� �
¼

l n1c0ð1; xþ nÞ
rn2c0ð2; x� nÞ

� �
:

Therefore

PðX ðU ;c0Þ
n ¼ xÞ ¼ jc0ð1; xþ nÞj2 þ jc0ð2; x� nÞj2;

and hence

EðeixX
ðU ;c0Þ
n Þ ¼

X
x AZ

eixxðjc0ð1; xþ nÞj2 þ jc0ð2; x� nÞj2Þ

¼ e�ixn
X
x AZ

eixxjc0ð1; xÞj
2 þ eixn

X
x AZ

eixxjc0ð2; xÞj
2:

Thus, by dominated convergence theorem, we have

lim
n!y

EðeixX
ðU ; c0Þ
n =nÞ ¼ e�ix

X
x AZ

jc0ð1; xÞj
2 þ eix

X
x AZ

jc0ð2; xÞj
2:

We conclude that for l2 ¼ 0 the limit distribution is

mðU ;c0Þ ¼
X
x AZ

jc0ð1; xÞj
2

 !
d�1 þ

X
x AZ

jc0ð2; xÞj
2

 !
d1:

Next we consider the case l1 ¼ 0. Then, at time n, we have

cnð1; xÞ
cnð2; xÞ

� �
¼

ðl2r1Þm�1 l2c0ð2; xþ 1Þ
r1c0ð1; x� 1Þ

� �
; if n ¼ 2m� 1

ðl2r1Þm
c0ð1; xÞ
c0ð2; xÞ

� �
; if n ¼ 2m:

8>><
>>:

Therefore

PðX ðU ;c0Þ
n ¼ xÞ ¼ jc0ð1; x� 1Þj2 þ jc0ð2; xþ 1Þj2 if n is odd

jc0ð1; xÞj
2 þ jc0ð2; xÞj

2 if n is even

(

and hence

EðeixX
ðU ; c0Þ
n Þ ¼

P
x AZ eixxðjc0ð1; x� 1Þj2 þ jc0ð2; xþ 1Þj2Þ if n is oddP
x AZ eixxðjc0ð1; xÞj

2 þ jc0ð2; xÞj
2Þ if n is even

(

¼ eix
P

x AZ eixxjc0ð1; xÞj
2 þ e�ix

P
x AZ eixxjc0ð2; xÞj

2 if n is oddP
x AZ eixxðjc0ð1; xÞj

2 þ jc0ð2; xÞj
2Þ if n is even:

(

By dominated convergence theorem again, we have

lim
n!y

EðeixX
ðU ; c0Þ
n =nÞ ¼

X
x AZ

ðjc0ð1; xÞj
2 þ jc0ð2; xÞj

2Þ ¼ 1:
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We conclude that for l1 ¼ 0 the limit distribution is

mðU ;c0Þ ¼ d0:

The proof is completed. r

Proof of Proposition 2.3. If the particle is located at the origin with a chiral

state
a

b

� �
, then the Fourier transform of it is just a constant:

ĉc0ðkÞ1
ĉc0ð1; kÞ
ĉc0ð2; kÞ

 !
¼ 1ffiffiffiffiffiffi

2p
p a

b

� �
:ðA:24Þ

By using this and Lemma A.3 we can directly compute the function gðU ;c0ÞðyÞ
in (A.21), which gives exactly the factor ð1� bðU ;c0ÞyÞ in the statement of the
proposition. By Theorem 2.1 the proof is completed. r

Now we present the values of functions that are used to get gðU ;c0ÞðyÞ in
Theorem 2.1, i.e., the part of limit density function that depends on the initial
conditions. It is obtained by directly computing lGðGcjðyÞÞ and mGðGcjðyÞÞ for

j ¼ 1; 2. For this we first need to compute SðkÞ�1 at k ¼GcjðyÞ, j ¼ 1; 2.

Lemma A.2. Suppose that l1l2r1r2 0 0. The values SðkÞ�1
at k ¼GcjðyÞ,

j ¼ 1; 2, are as follows:

Sðc1ðyÞÞ�1 ¼ l2e
iðc1ðyÞ�y1Þ

2

1� y

l2e�iy1

�1

jl1j
yþ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jl1j2 � y2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jl1j2

q
0
B@

1
CA

1þ y

l2e�iy1

1

jl1j
yþ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jl1j2 � y2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jl1j2

q
0
B@

1
CA

0
BBBBBBBBB@

1
CCCCCCCCCA

Sðc2ðyÞÞ�1 ¼ l2e
iðc2ðyÞ�y1Þ

2

1� y

l2e�iy1

�1

jl1j
y� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jl1j2 � y2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jl1j2

q
0
B@

1
CA

1þ y

l2e�iy1

1

jl1j
y� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jl1j2 � y2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jl1j2

q
0
B@

1
CA

0
BBBBBBBBB@

1
CCCCCCCCCA

Sð�c1ðyÞÞ�1 ¼ l2e
�iðc1ðyÞþy1Þ

2

1þ y

l2e�iy1

1

jl1j
yþ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jl1j2 � y2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jl1j2

q
0
B@

1
CA

1� y

l2e�iy1

�1

jl1j
yþ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jl1j2 � y2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jl1j2

q
0
B@

1
CA

0
BBBBBBBBB@

1
CCCCCCCCCA

382 chul ki ko and hyun jae yoo



Sð�c2ðyÞÞ�1 ¼ l2e
�iðc2ðyÞþy1Þ

2

1þ y

l2e�iy1

1

jl1j
y� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jl1j2 � y2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jl1j2

q
0
B@

1
CA

1� y

l2e�iy1

�1

jl1j
y� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jl1j2 � y2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jl1j2

q
0
B@

1
CA

0
BBBBBBBBB@

1
CCCCCCCCCA

Proof. We use the definition of SðkÞ by using the eigenvectors of UðkÞ
in (A.6) and compute the values at GcjðyÞ, j ¼ 1; 2, as it was done in (A.23).

r

It is then straightforward to compute lGðGcjðyÞÞ and mGðGcjðyÞÞ. Notice that

the Fourier transform of the initial vector is denoted by ĉc0 ¼
ĉc0ð1; kÞ
ĉc0ð2; kÞ

 !( )
k AK

.

Lemma A.3. Suppose that l1l2r1r2 0 0. The values of lGðGcjðyÞÞ and
mGðGcjðyÞÞ, j ¼ 1; 2, are as follows.

lþðc1ðyÞÞ ¼
l2e

�iy1

2

 
1� y

l2e�iy1
ĉc0ð1; c1ðyÞ þ y1Þ

� 1

jl1j
yþ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jl1j2 � y2

1� jl1j2

s !
ĉc0ð2; c1ðyÞ þ y1Þ

!

lþðc2ðyÞÞ ¼
l2e

�iy1

2

 
1� y

l2e�iy1
ĉc0ð1; c2ðyÞ þ y1Þ

� 1

jl1j
y� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jl1j2 � y2

1� jl1j2

s !
ĉc0ð2; c2ðyÞ þ y1Þ

!

l�ð�c1ðyÞÞ ¼
l2e

�iy1

2

 
1� y

l2e�iy1
ĉc0ð1;�c1ðyÞ þ y1Þ

� 1

jl1j
yþ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jl1j2 � y2

1� jl1j2

s !
ĉc0ð2;�c1ðyÞ þ y1Þ

!

l�ð�c2ðyÞÞ ¼
l2e

�iy1

2

 
1� y

l2e�iy1
ĉc0ð1;�c2ðyÞ þ y1Þ

� 1

jl1j
y� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jl1j2 � y2

1� jl1j2

s !
ĉc0ð2;�c2ðyÞ þ y1Þ

!
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mþðc1ðyÞÞ ¼
1� jl1j2

2jl1j

 
�1

l2e�iy1
y� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jl1j2 � y2

1� jl1j2

s !
ĉc0ð1; c1ðyÞ þ y1Þ

þ jl1j
1� jl1j2

ð1þ yÞĉc0ð2; c1ðyÞ þ y1Þ
!

mþðc2ðyÞÞ ¼
1� jl1j2

2jl1j

 
�1

l2e�iy1
yþ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jl1j2 � y2

1� jl1j2

s !
ĉc0ð1; c2ðyÞ þ y1Þ

þ jl1j
1� jl1j2

ð1þ yÞĉc0ð2; c2ðyÞ þ y1Þ
!

m�ð�c1ðyÞÞ ¼
1� jl1j2

2jl1j

 
�1

l2e�iy1
y� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jl1j2 � y2

1� jl1j2

s !
ĉc0ð1;�c1ðyÞ þ y1Þ

þ jl1j
1� jl1j2

ð1þ yÞĉc0ð2;�c1ðyÞ þ y1Þ
!

m�ð�c2ðyÞÞ ¼
1� jl1j2

2jl1j

 
�1

l2e�iy1
yþ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jl1j2 � y2

1� jl1j2

s !
ĉc0ð1;�c2ðyÞ þ y1Þ

þ jl1j
1� jl1j2

ð1þ yÞĉc0ð2;�c2ðyÞ þ y1Þ
!
:

References

[ 1 ] A. Ahlbrecht, H. Voghts, A. H. Werner and R. F. Werner, Asymptotic evolution of

quantum walks with random coin, J. Math. Phys. 52 (2011), 042201.

[ 2 ] A. Ambainis, E. Bach, A. Nayak, A. Vishwannath and J. Watrous, One-dimensional

quantum walks, Proceedings of the 33rd Annual ACM Symposium on Theory of Comput-

ing 37, 2001.

[ 3 ] C. M. Bender and S. A. Orszag, Advanced mathematical methods for scientists and

engineers, McGraw-Hill, New York, 1978.

[ 4 ] N. Bleistein and R. A. Handelsman, Asymptotic expansions of integrals, Holt, Rinehart

and Winston, New York, 1975.

[ 5 ] F. Fagnola, Quantum Markov semigroups and quantum flows, Proyecciones 18(3) (1999),

1–144.

[ 6 ] E. Farhi and S. Gutmann, Quantum computation and decision trees, Phys. Rev. A

58 (1998), 915–928.

[ 7 ] G. Grimmett, S. Janson and P. F. Scudo, Weak limits for quantum random walks, Phys.

Rev. E 69 (2004), 026119.

[ 8 ] M. Katori, S. Fujino and N. Konno, Quantum walks and orbital states of a Weyl

particle, Phys. Rev. A 72 (2005), 012316.

[ 9 ] J. Kempe, Quantum random walks—an introductory overview, Contemporary Physics

44 (2003), 307–327.

384 chul ki ko and hyun jae yoo



[10] C. K. Ko and H. J. Yoo, Interacting Fock spaces and the moments of the limit distributions

for quantum random walks, to appear in Inf. Dim. Anal. Quantum Probab. Rel. Topics.

[11] N. Konno, Quantum random walks in one dimension, Quantum Information Processing

1 (2002), 345–354.

[12] N. Konno, A new type of limit theorems for the one-dimensional quantum random walk,

J. Math. Soc. Japan 57 (2005), 1179–1195.

[13] N. Konno, Continuous-time quantum walks on trees in quantum probability theory, Inf.

Dim. Anal. Quantum Probab. Rel. Topics 9 (2006), 287–297.

[14] C. Liu, Quantum random walks on one and two dimensional lattices, Dissertation, 2005.

[15] T. Machida, Realization of the probability laws in the quantum central limit theorems by a

quantum walk, to appear in Quantum Inf. Comput., arXiv 1208.1005v2.

[16] K. Manouchehri and J. B. Wang, Continuous-time quantum random walks require discrete

space, J. Phys. A: Math. Theor. 40 (2007), 13773–13785.

[17] D. Meyer, From quantum cellular automata to quantum lattice gases, J. Stat. Phys.

85 (1996), 551–574.

[18] A. Nayak and A. Vishwanath, Quantum walk on the line, available at Los Alamos Preprint

Archive, quant-ph 0010117.

[19] N. Obata, A note on Konno’s paper on quantum walk, Inf. Dim. Anal. Quantum Probab.

Rel. Topics 9 (2006), 299–304.

[20] K. R. Parthasarathy, An introduction to quantum stochastic calculus, Monographs in

mathematics 85, Birkhäuser-Verlag, 1992.
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