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DUAL SPACES OΓ  RESTRICTIONS IN THE REPRODUCING
KERNEL IIILBERT SPACES IN DISCRETE SETS

HYLFN JAE YOO*

Abstract

We characterize the dual spaces of restrictions of a dual pair of reproducing kernel

Hilbert spaces in a discrete set. Consequently, '',【 Γ̨e give a canonical dense subset to the

restriction spaces. As applications, we reprove a variational principle in a dual pair of

reproducing kernel Hin)ert spaces. Also we give a geolnetric rePresentation fbr the

existence and ergodicity condition of equilibriuln Glaut}er and Kaㄳ rasaki dynalnics for

solne deterIylinantal point processes.

1. Introduction

In this paper ㄲTe discuss the linear fUnction spaces on discrete sets. Given

a countable set E, 、ve denne a dual pair of reproducing kernel Hilbert spaces

ㄳrith a priori given kernel fUnctions. We are interested in the restrictions of

the fUnctions to any subsets of E. The restriction theory for the reproducing

kernel Hilbert spaces (in short RKHS’ s) is well explained by Aronsz甸 n in [1].

Nevertheless, we wi11 fUrther investigate, in particular, the dual spaces of the

restrictions. Though RKHS’ s are Hilbert spaces thelnselves, in illlany aspects
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One Inore Inotivation fbr this study calne froIIl a construction of the

equilit}riul— rl dynaITlics 、、Thich leave invariant a priori given a probability IIleasure.

To say little II10fe ConcretelyF the kernel operator used in the RKHS’ s in this
paper 'ㅈ/il1 denne a certain deteryninantal point process, ㄳrhich is a probability

Ineasure on the connguration space 'vith state space E. We ㄱ
'’

【
'Tant to constructthe so called Glauber and Ka''ˇ asaki dynaIIlics 、⌒rith the deterIIlinantal point

K˛ν1,'ord’ . Reproducing kernel Hilbert space, restriction, dual space, deterlninantal point pro—

cess, variational principle. Glauber and Ka''˙ asaki dynalnics.
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[2]. For the construction of Fellerian
the ergodicity of the dynaIIlics, the theory

play ilnportant roles. 工n Section 3, we

process being a sylnlnetrizing lneasure

Markov process, and further, to disc1ㅗ ss

of RKHS’  s and the restriction theories

disc1ㅗss solne part of the∏ 1.

We organize this paper as follo、사Ts. In Section 2, 、ve introduce a basic
construction Inethod for the dual pair of RKHS’ s and then state the Inain results.

工n Section 3, ㄳΓe discuss above Inentioned applications. Section 4 is devoted to

the proofξ. 工n the nnal Section 5, ㄲTe discuss an open probleln.

2. PreLi∏ⅱnaries and results

工n this Section we briefly introduce the reproducing kernel Hilbert spaces and

give the Inain results. We nrst recall the dennition of RKHS’ s f'oln ref: [1].

A (coInplex) Hilbert space ∈ℓ consisting of functions on a set E and equipped

with an inner product (·
’
·) (assulned linear fbr the second argulnent) is called

a reproducing kernel Hilbert space with reproducing kerne1 (shortly RK), say

K(χ , ν), χ, ν ∈ E, if
(i) For every χ ∈ E, the fUnction K(·

, χ) belongs to c夕
"’

;

(ii) The reproducing property: fbr every χ ∈ E and ∫ ∈ Zㅏ , ∫(χ) 〓
(K(·

, χ), ∫).

工n this paper we deal only with discrete spaces. Thus froln now on ㄳ/e let E
be any nxed countable set and let "勺  :〓 I2(E) be the Hilbert space of square

sulnlnable functions (sequences) on E equipped with the usual inner product:

(∫
, θ)0 :〓 ∑Π巧θ(χ), ∫, θ ∈ "勺 .

χ ∈ E

(2. 1)

(2.4)

Let A be any positive deflnite, bounded linear operator on c’ ,‘

'‘',. Notice that 

Δ
'‘

[ is

a Herlnitian operator. We assuIIle that Ker Δ 〓 {야 , thus Ran Δ is dense in ⅔̨6.

Let B :〓 {eχ
 : χ ∈ E} be the usual basis of "⅞ , i.e˚ , eχ ∈ "勺 is the unit vector

whose component is l at χ and O at all other sites˚
We denne two additional norlns on "⅞  and on the range of Δ, respectively.

First on "⅞ , we denne a neㄳ T inner product (·

’
·)- as fbllows:

(2.2)(∫
, θ)- :〓 (∫

, 
Δθ)0, ∫, θ ∈ "⅞ .

On Ran Δ, ㄳΓe denne another inner product (·
’
·)+ by

(2.3)(∫
, θ)+ :〓 (∫

, 
Δ-1θ

)0, ∫, θ ∈ Ran Δ̊

Let us denote by ‖·‖ - and ‖·‖ + the corresponding induced norlns. Finally, let
˛
"ℓ

τ- be the colnpletion of "勺  w.r.t. ‖·‖ - and Zㅏ  the colnpletion of Ran Δ w● r.t.

‖  ̊‖ +. Then ㄳΓe obtain the fblloㄲ Ting rigging of Hilbert spaces.

c""˛- ⊃ "⅞ ⊃ Zㅏ·

Let Δ(χ , ν), χ, ν ∈ E, be the Inatrix eleΠ lents of Δ w.r.t. the basis {eχ
}χ∈E:

(2.5)Δ (χ
, ν) :〓

 (eχ
, 
Δφν)0’ χ, ν ∈ E.
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工t is easily seen that Zㅏ  is a reproducing kernel Hilbert space 、、Tith reproducing

kernel A (λ
˜
·)'). On the other hand, it should be noted that soIIle of the eleIIlents

of I二 IIla}T not be represented as fUnctions on E in general˚  This is so called a
fUnctional conlpletion probleln [1] and ㄲTe will assul— rle the fblloㄳ ring:

Hypothesis (H): We suppose that ˛
"色

— is functionally conlpleted, i.e˚ , any vector
of :̨’

’

r'‘

ι::-- can be represented as a fUnction on E˚

In [4], ㄳ/e gave soIIle sumcient conditions on the operator Δ so that the above
hypothesis is satis요 ed. Now the space ∈

""˛

- being fUnctionally coIIlpleted, c"【 一
itself is a reproducing kernel Hilbert space. For this ㎩ct we refer to [1, p 343 and

p 347]. Denote the RK of ∈
""˛

ㅡ by B(χ , ν), χ, ν ∈ E. ForΠlally B 〓 Δ-1, which

is not a bo1】nded operator in genera1.

The I—lilain Hlerit of the rigging in (2.4) is that the spaces c"쯔 — and Zㅏ are the
dual spaces to each other [4, Proposition 2.2]. The purpose of this paper is to

characterize the dual spaces of the restrictions of the RKHS’ s !'"L and Zㅏ . For
this purpose, 'ㅈ /e brie且y reca11 the restriction theory for RKHS ’

 s froln the reference

[1, Section 5, Part I].
Let ℓ

"’

 be any RKHS (on E) with RK K(χ
, ν). Let R ⊂ E be any (요 nite or

innnite) subset of E, and let κk (χ , ν), χ, ν ∈ R, denote the restriction of K to the
set R × R˚ As K(χ , ν) is a positive de且 nite function, and the salne is true fbr the

restriction 」K(k(χ , ν), the kernel KR(χ , ν) itself is a unique RK fbr a RKHS on
the set R, 、、rhich 、、Γe denote by ""k,KR [1]. It turns out that 夕̨

"矢

,Kk is in fλ ct the

restriction space of c¾
" to the set 

」
':':. 

τhat is, ∈夕
"矢

.Kk consists of all functions

∫ : R --⇒ C such that there is a vector ∫ ∈ θ
" 
、̃Tith

(2.6) πR∫ 〓 ∫,

ㄳThere πR is the restriction operator on the fUnction space on E to the fUnction
space on R denned by

πR∫ (χ ) 〓 ∫(χ), χ ∈ R,

fbr any fUnction ∫ on E. The norln of ,̨"矢,KR is deflned by

(2.7)‖ 케R,Kk :〓
 inf{‖ 케K : πR∫ 〓 ∫},

where ‖·‖K is the norln fbr θ
'’

. We notice that fbr any ∫ ∈ ∈夕
"矢

,KR, there is a
(unique) ∫

I ∈ -¾

‘

 s.t. πR∫ ' 〓 ∫ and

(2.8)‖ 케R. KR 〓 ‖∫에K·

We refer to [1, Part 工F Section 5] fbr the details. By (2.7) and (2.8), we see that
the operator πR : (Iㅢ 1· ‖K) -→

 (—夕

"矢

.Kk,ㅙ ·
‖R,Kk) is bounded and the operator

norln is 1.

Recall that Jυ ι:-- and 'γ二 are RKHS’ s with RK’ s I'‘[ and B, respectively.

Given any sut〉 set R ⊂ E, '、γe denote the restriction spaces of Zㅏ and ⅔̨쯔— to the
set 」fㄹ by ℓ

"矢

. AR and ι
"φ

‘

ⅱ. BR, respectively. We would like to characterize the dua1
spaces of theln. As usual I2 (-II[;':) denotes the space of square sulnlnable fUnctions
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on R. Since we have ˛
"6 

≡ I2 (E) ⊃ 夕
"’

十, the restriction space ˛
""k.Δ

R is a subspace
of I2 (˜ j';':) :

(2.9) I2 (R) ⊃ θ
"k, AR 

˙

As an inverse operation to πR, ㄳTe let ιR be the embedding operation Inapping
a fⅲnction ∫ on R to the fUnction on E as fbllows:

(2.κ)η Λχ) 〓 {{(χ )’ ; 흘 :'R.
Since tRI2(R) ⊂ "⅞ ⊂ ∈

"":一

, we see that

(2. 11)∈
""矢

, BR 
⊃ I2(R).

∶
I:Σ

'I∫

ot[:또

 ::τ獄i;;:t:ξ :i;:랗 ::ξY∵Kㅑ;i瓷능∶:F ∶

‘

t:∵::ι r 1」

' 

풍f)T⅛

' j1:

=능

e:ξ
j!;i 

:̇:Iⅱ킁r 쵸∶h:::::j¾¡苛∶
∝占: κ⅞r#尨 (ㄲ ,η옭∶:ξ 였I얗笏挫: 珝쓰̇섬i:⅝

πR(ιR∫ ) 〓 ∫ we see that

(∫ , B됴 Y)0 〓 (∫
, ∫)R, BR

≤ (ιR∫ , 
ιR∫ ) —

〓 (ιR∫ , 
ΔιR∫ )0

〓 (∫
, 
ΔR∫ )0·

Therefbre '/e get

(2.13) Bㅈ 1 ≤ ΔR.

By (2. 12) and the polarization identity 、ㅈ/e see that the Inatrix colnponents of
B됴 1 (χ

, ν) is given by

(2. 14)B됴 1 (χ

, ν) 〓
 (eχ

, B됴
le’

)0 〓
 (eχ

, eν )R,BR’  χ, ν ∈ R.

麓∶:度n出
#ylI⅞ξ됴席#歪￢品1ξ표표Fㄿ τ됴1∶

)ξ

.㎋

he nⅲ chㅃ c—

THEOREM 2. 1. ιe' ι力e 力νρoι力eδ I♂ (H) ¿e ΞαHEΠe" I物 eκ /by αην R ⊂ E, we
力αt,e

"∝
,BR 〓

 θ

"矢
,B됴

1 〓 πR(ιR(I2(R)) ∩ Zㅏ ).

We notice that the space ιR (I2 (R)) ∩ Zㅏ consists of elelnents Zㅏ that is supported
on R.

In order to characterize "∝
, AR’ 

ㄱ
'''Γ

e introduce a notation. For any subset
S ⊂ E, we de요ne
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(2.15)F0(S) :〓 {∫
 ∈ ∈多υ

“

- : ∫(χ) 〓 0 fbr aⅡ χ ∈ S}¸

As in the case fbr "k,BR, let Δ頁
1 (χ

, ν) be the kernel fⅲ nction on R denned by

(2. 16) A玉 1 (χ

, ν) :〓
 (ex’

 勺,)R,AR’ χ, ν ∈ R,

where (·
:· )R¨긴R denotes the inner product in ∈夕

"矢

,Δ R. The inner product in

i::|η ,':、二
eil내

芒:f묘 응::∵ :': I½두 '"〓
 br aⅡ  χ ∈ E (see [4, Prop㎱ⅱion 2˚ 2]) and

Obviously Δㅈ
I (χ

, ν), χ, ν ∈ R, is a positive dennite f'Unction and we let
ℓ

"矢

,Δ 됴
1 be the RKHS with RK Δ五

1 (χ
, ν). The second characterization is as

fblIoㄲTs :

TIⅢOREM 2˚ 2. ι

"ι

I"y ι力e 力〃 o∫力eδ I♂ (H), 力 I αην R ⊂ E }'’ e 力αυe

Mτ
,Δ R 〓 "%,Δ

됴1 〓 πR(F0(Rε )).

κκ ∵γ:: φfll〓,:;¼Yα

鎔  ακ eαπαI ω (羽e ㎍ νIα Joη σ ) Ψ〃7 {ex : χ ∈ R} 〃H力

The nnal result is for the hierachies of the fUnction spaces.

TIIEOREM 2.3. S"ρ ρι

’

I,e 羽ατ I力 e 力νρoι力eδ I♂ (H) I♂ δατIεΠe" I物 eκ 力 I αην
R ⊂ E, αJ 力 y ι力e 力κετIoκδ oκ ι力e δeI R 〃e 力αυe I力 e ':κ εIαδIoκδ:

c夕

"矢

,BR ⊃ "∝
,Δ R 

⊃ I2(R) ⊃ J"矢
,Δ R ⊃ "π

,BR˙

I¼e e羽¿e〃¿I':η ℓ θ
"矢

,BR ⊃ I2(R) ':j ιI"κδe.

The proofξ of the theorelns are given in the section 4.

Reηzα yλ 2.4. When the operator Δ has a bounded inverse B :〓  Δ-1, a11 the

results in Theorel— rls 2. 1 -2.3 can be proven ㄲTithout dimculty. The theory of

RKHS’ s helps us extend the results 'ㅈ /hen Δ is not boundedly invertible.

3 ● Applicaⅱons

3● 1● A ▼ariationa】 principle in the pair of ∈多
':- and Zㅏ

㏏s p:∶
j÷ㄴ∶ξ毖∶⅝rs않甚: aΞ

'埋

;황壬Γ∶f;雜표ㅛ혔띰ξ
=√

fI盆
∫표 쭈

;

we can repro、 Te it. Let us briefly introduce it. For each nnite subset 
Λ ⊂ E

(denoted by Λ ⊂⊂ E hereal:ter) let

(3. 1)Floc Λ :〓 the linear space spanned by {eχ
 : χ ∈ Λ}.

拈
t√0 Ξ표 ℉그

ai:I'd正 o:;: 

Ψ占 됴扇 {ㅑ::Y∶:능: 좟 보꿈:: 搖료
ion ofE (one

(3.2)γΛ :〓 I ∈μ근:-p: eλ
'!:I - ∫‖二 and βΛ :〓 

θ∈ㅕ:뜨鰍2 lle枸
 — θ‖

=.
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Obviously, {α Λ}Λ  ⊂⊂ E and
Consequently we denne

(3. 3)α

The variational principle in

partition E 〓 {χ0} ∪ R1 ∪ R2,
Theoreln 2.4] and also [3]) :

(3.4)

In order to prove

in [4]. First, for

(3. 5)

IIYIJN JAE YOO

{βΛ}Λ  ⊂⊂ E are decreasing nets of nonnegative nulnbers˚

끗桔 
αΛ and β :〓 

뇻倦 
βΛ

[4] reads as fbllows: no Inatter how we
the product of ∝ and β is equal to 1

αβ 〓 1.

take a
(see [4,

(3.4) ㄳTe reca11 the bilinear fUnctional on ˛
"ι

1- × Zㅏ introduced

∫ ∈ 爻勺 and θ ∈ Ran Δ, de요 ne

— 〈∫, θ〉+ :〓 (∫
, θ)0 〓 ∑ 

Π巧θ(χ
)

:γ ∈ E

It is not hard to see that

(3.6) |ㅡ 〈∫, θ〉+ | ≤ ‖케— ‖에+’

thus it continuously extends to ㄷ好— × θ
"=. By abuse of notation, we denote theextension by the salne notation - 〈·,· 〉+. FOf Convenience ㄳTe denote the coIIlplex

co미 ugate of it by +〈 ·
’
 
◆〉-, 1.e.’

+〈θ, ∫〉一 :〓 -〈∫, θ〉+, ∫ ∈ ⅔̨쯔—, θ ∈ Δㅏ·

NoㄳT ㄳTe are in a position to prove (3.4)  ̊In [4], ㄳΓe have noticed that there are
vectors α2 ∈ 4 and ¿l ∈ ˛

""L such that supp 
α2 ⊂ R2 (Ineaning that α2(χ ) 〓 0 fbr

χ ∈ RΞ ) and supp ¿1 ∈ Rl, and Inoreover the fbllowing equality holds (see [4,
eq˚ (3.41)]) :

(3.8)1 〓 αβ + +〈α2, 1̧ 〉ㅡ ●

By using (3.8), the relation (3.4) fblloㄳ Γs f'oln the fbllowing proposition.

PROPOSITION 3. 1. S"ρρoδe I力α
' R1 

ακιI R2 αye 〃I玎o'κι δ笏̧ δeιδ q/ E. ∫

α2 ∈ Zㅏ  ':δ
 δz˛ρpoyte〃  oκ R2 ακ〃 α1 ∈ ⅔̨쯔— ':δ δ

"'ρ

I’
oTte〃 oκ R1, ι力eκ +〈α2, αl 〉- 〓 0.

;뀔‰ 초,쪼 
곁⅝{h2, <쏭 ’幇

2 bY Rλ
B˛ 〈·

’

·〉뇨 B˛ · Ndi㏄  ⅲ
" 

㎩ r ∫ ∈ I2(R2) ㏂ d

ave

R2, BR2 〈∫, θ〉요2, BR2 〓 ∑ Π刀θ(χ
).

χ ∈ R2

Let {/½ } ⊂ cZ勺 〓 I2 (E) be any sequence that converges to αl in c夕

"느

, i.e., converg—

ing in ‖·‖ --norln. Since α2 ∈ 4 is supported on R2, i.e., α2 ∈ ιR2 (I2(R2)) ∩ Zㅏ
’by Theoreln 2. 1 ㄲTe see that πR2α2 ∈ ""I2,BR2· By (3˚ 9), and by using the con¨

(3. 7)

(3.9)
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tinuity of the restriction operator πR : (∈⅔쯔—, ‖
·

‖ -) 
一→ (θ

"矢

,BR, ‖
·

‖R,BR) fbr any
R ⊂ E (see (2.7)), we get

since πR2α 1 〓 0˚

— 〈α1, α2〉 + 〓 '≡⅜ ㅡ 〈/L, α2〉+

〓 娩 乏
= 

Λ(χ)η (χ
)

〓  #뾰
 R2, BR2 

〈πR2/½ , 
πR2 α2 〉A2, BR2

〓  R2, BR2 
〈πR2 α1, πR2 α2 〉A2. BR2

〓 0,

□

:끝읖 匡: H므 I Iγ

(ㅛ ξ) - α(χ ; 
〃ξ) |,

3.2. Interdependencies of Πip rates of G】 auber and Kawasaki dynamics fbr
deter∏linantal point pⅡ ȯcesses: a I· Iilbertian, geo∏ letric representation

工n [2], ㄲTe have constructed Glauber and Kaㄳ Tasaki dynalnics fbr deterlni¨

nantal point processes in discrete sets. To construct the equilit⊃ riuln dynalnics

that leaves certain point process invariant, the Papangelou intensities of the point

process, which are conditional probability densities, play a central role (see [2] for

the details). In order to get a Fellerian Markov process, and also to get an

ergodicity of the process, it is needed to contro1 the inter¨ dependencies of the flip

rates˚ We fbcus only on the application of the result of this paper, so ㄲTe

introduce just the key expressions, referring the details to [2]. The Papangelou

intensities are turned out to be the nulnbers α in (3. 3). 、Iore concretly, let χ ∈ E
be any eleIIlent and let ξ ⊂ E＼＼{χ} be any subset (connguration). Replacing χ0

and Rl in (3.2) by χ and ξ, respectively, let us denote the resulting nunlber α
in (3˚ 3) by α(χ

; ξ). The 且ip rates fbr Glauber and Kaㄳ Tasaki dynalnics which

leave the laㄳ / of the deterlninantal point process invariant are deterlnined by the

nulnbers α(jκ
; ξ). FroIIil the deflnition, this nulnber α(χ

; ξ) has already a geo—
Inetric interpretation. Nalnely, α(χ

; ξ) is the square of the distance (in (多 ι

‘

1-) f'oln

the vector eχ  to the subspace spanned by {e〕 ·: 

’

’ ∈ ξ}. What ㄳ/e have called the
inter¨ dependency has the fiollowing expression fbr Glauber dynalnics (and siil— r1—

ilarly fbr Kaⅵ Tasaki dynalnics) :

(3. 10)

where we used a short— handed expression, νξ :〓 {〃
} ∪ ξ● Therefbre we need to

understand the quantity ! γ(λ
-: 

ξ) - γ(χ : νξ) l Inore concretely as Inuch as possible.
For each ξ ⊂ E. ''˘ e let PΞ  the orthogonal pr어 ection in ⅔̨쯔— onto the sub—

space span{ej : )' ∈ ξ}. The fblloㄲγing proposition gives several ways of inter—
pretation to the diΠ↔rence γ(λ

⌒
: ξ) 

ㅡ α(χ
; 
〃ξ).
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(3. 12)

(3. 13)

IIYII' JAE YOO

PROPOSITION 3.2˚  Iby ακ
,’

 χ # ¿ι ∈ E α
'η

〃 χ, ν 쓴 ξ ⊂ E, 〃e 力αυe ι力e /bIIow'κ θ

'ν

q̇I’ yeJe'"‘

' 

ια tloη Ij' :

α(χ
; ξ) - α(χ

; αξ) 〓 ‖PHξ eλ - Pξ ex ‖二

〓 | (ex, (I — Pξ
)eν )ㅢ

2·

‖ (I 一 Pξ
)e〃  ‖ Ξ

2

〓 ㅣ (ex, eν )ξ
ι B」 2· ‖e川

'Bξ

‘ ˙
I'z ραytIεα∴zy, ':κ  α 力 y羽αI I"υeI, we α

'Ξ

o 力αυe I力 e y‘pleδ eκιαHoκ :

(3. 11) α(χ
; ξ) - α(χ

; 勿ξ) 〓 |Δ (χ
, 
〃) 

ㅡ Δ (χ
, ξ)A(ξ , ξ)-lΔ (ξ

, 
〃) l2 . α(π

; ξ)-l.

Pyot깅I: Reca11 that α(χ
; ξ) is the square of the distance bet'Λ /een the vector eχ

and the space Pξ I-. That is,

α(χ
; ξ) 〓 ‖ (I — Pξ

)eλ ‖二.

By using this fλ ct and the theoreIy1 of three perpendiculars 'ㅈ /e get the nrst

identity. To proceed, ㄳ/e next sho'Λ / the equality of the second and the last

expressions. By Theorell1 2.2, Pξ 夕̆ℓτㅡ is equal to the space F0(ξε
), the subspace

of ∈⅔쯔— consisting of the fUnctions that vanish on ξ‘
. On the other hand, the

orthogonal colnpleIIlent to F0 (ξ  

ε
) is isoillletrically equivalent to the space J¾

"⅞

 

ε
, Bξ

‘

痒 ji; 무jj::∶ ; 

’

’∈兮孑,¼:; t肛  ::rfs:∶ :#c’ I 니㎩
'f 

요ⅲ紛I(生탐 ㅛⅱ
‖∫에ㅡ 〓 ‖/llξ c,Bξ

‘
  ̊Since eχ and e“  are supported on ξ

ε ㄲTe ∏lay silnply write
πξ

ι eχ 〓 eχ and 先ξ‘
e〃 〓 e〃, and then we have

α(χ
; ξ) 〓 ‖ (I — Pξ

)ex‖生 〓 ‖eㅙ :‘
’
,Bξ‘ ˙

Now we recall floln [4] that

(3. 14)

where ξ△ 〓 ξ ∩ △

(3. 15)

α(χ
; ξ) 〓liII1

det Δ (χξ△, 
χξ△)

五i甘 det A(ξ△, ξ△) ’

〓 lily1
det Δ (χ勿ξ△, χπξ△) /det Δ (ξ△, ξΔ)

) / det

ξ) 〓 ‖ In a very silnilar

e〃
) ξ 

ε
, Bξ

and Δ (ξ△, ξ△) is the nlatrix (Δ  (χ , ν))χ
,,’

 ∈ ξΔ· Silnilarly we have

α(˛ πξ) 〓 ∶꼲으丑男楊釜½簽쑤
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FroII1 (3. 13) and (3. 17) ㄳTe get

(3. 18)∝ (x; ξ) ㅡ α(χ
; 
勿ξ) 〓 | (eχ

, e〃 )ξ‘, B」 2·
‖e川

'Bξ

‘’
'자

Thich is the last expression in the proposition. For the second equality 、⌒Γe

notice that

(3. 19)| (eχ , (I — Pξ
)e〃 )ㅢ

2 
〓 | ((I — Pξ

)eχ , (I — Pξ
)e〃 )ㅢ 2

〓 | (eχ
, eα )ξ‘, Bξ‘

 | 2,

where we have used the relation (3. 13) and the polarization identity. FroII1

(3. 13) and (3. 18)-(3. 19), ㄳΓe sce that the second and the last expressions are the
salne. Finally 、、Te check the relation (3. 1 1) in a fbriIIlal leve1. Since (infbrIIlally)
B 〓 Δ-l,

(3.20)(ex, eα
)ξ‘, Bξ‘

 〓 (eχ
, (Bξ‘) - l eα )0

〓 (eχ
, [(Δ

ㅡ 1)ξ

‘] - l e〃 )0

〓 (eχ
, [Δ (ξ

ε
, ξ
ε
) 
ㅡ Δ (ξ

ε
, ξ)Δ  (ξ

, ξ) -l Δ (ξ
, ξ
ε
)]eα )0

〓 Δ(χ
, 
勿) - Δ(χ

, ξ)Δ (ξ
, ξ)-1Δ (ξ

, 
勿).

Froln (3. 19) and (3.20) we get (3. 11). This colnpletes the proof.□

4● Proofs

In this section we provide ㄳTith the proofξ  for the theorelns in Section ::':˚

We start by shoㄳ ring the last assertion in Theoreln ::':.3, ㄱ

'’

【
'rhich says that I2 (R)

is densely embedded in H'.BR. Since it is worthy to notice we state it as a
proposlt10n.

PROPOSITION 4˚  1  ̊D物 〃

"y 
ι力e ½νρoι力eδ

'δ

 (H), I2 (R) 'δ  〃

"κ

δeυ e羽¿eιℓ¿ℓ

"〃

 'κ

θ

"k,BR 

力y ακν R ⊂ E.

∫ 〓 ¾ γ  L∴ 조 「Ξ
’
,삳

'2'甘

7 

荒 ξㅠ  Ξ札 :兎I됴 ∬ ξ

'¼

뉼료

e⅛e尹

 끕  彦

':

As noticed befbre, since πR : (∠- ㅙ ·‖ -) -⇒ (、

"矢
,BR, ‖

·‖R,BR) is continuous, we
see that πR/¾ -→ πR∫ 〓 ∫ in —夕

“

k.BR. Notice that πR/½ ∈ I2(R) since /¾ ∈ I2(E).

This proves that I2 (R) is dense in —夕

"灸

.BR.□

㎙I쵸

—
호ξ¾뇨휴丑 1푠

(4. 1)

Γ



Γ------—

ㅐ끔

'˙

⊂ 彦狂, l槐 街 γ∫끝場

") 

∶:{:⅛ o::::Ξ표1 망:舌:표o{퉁∫:났)) 풍::∶ :f出ξ
Recall that πR∫ ' 〓 πR(ιR(∫ )) 〓

 
∫ and ‖∫에— 〓 

‖/lIR,BR (see (2˚ 8)). We denne a

(co미 ugate) linear functional on I2 (」 fㄹ) by

I2(R) ∋ ∫ ㅏ→ - 〈∫', θ〉+·

By Schㄳrarz inequality we see that this fUnctional is bounded by

|ㅡ 〈∫', θ〉ㅢ ≤ ‖∫에—·‖gll+ 〓 ‖케 R,BR· ‖,ll+˙

(4. 2)

(4. 3)

(4. 5)

(4. 6)

This shoㄲTs that the f'Unctional in (4.2) is a bounded linear functional on I2 (R)

equipped 、、Tith the ‖·
‖R, BR¨norln. Since I2 (R) is dense in c,"'었 , BR by Propsition

표Y」 璧苧짧Ξξㅃ 뱌
(4.4)(eχ , eν )R,B長 1 〓 (ex, e〕 ,)+’ x, :ν  ∈ R.

But both are equal to the value B(χ , ν). This colnpletes the proof of Theoreln
2. 1.□

PYO(‘

’

:,II‘

、 (‘

’

:,'∫

f、

 T¼
eoyeη z 2.2˚ It is not hard to see that the operator ΔR, the

ξ
旣甘ⅱo묘1o쑈 ':::: 恁孟

、
↓rt#e::::::超우1료;∶

's:: 

奸ㅚ⅝cf:Σ ; 里 ;:汪

'1::e¾

Cauchy sequence in the sense that (/¾  - ∫η, ΔR(/¾ - ∫η)) --⇒
 0 as ηz, κ -⇒ 0○ , then

{ι R (/¾ )} is a Cauchy sequence in 夕̨
":-, which is fUnctionally colnpleted. There—

표:e H∬  

〓

쵸Hξ
r볐

fξ缸封

eI 
翁 ,ㅛ互감.I: s丁  t표Z梁

,乳
 :::I¾釜

4:Δㅑ;oT :::j「 :∫ })읕 I2(R) be any elelnent. Then

(∫
, 
ΔR∫ ) 〓 ‖ ιR(∫ ) ‖二‖케矢,Δ됴1 〓

This shows that ιR(∫ ) ∈ F0(Rε ) and ∫ 〓 πR(ιR(∫ ))˚
 Since I2(R) is dense in

‘

h(됴 :o￢쵸1j下 th戚

 4,Δ
퓻
1 ⊂ πR(F0(Rε )). Now suppoκ th戚 ∫ ∈ F0(Rε ). We

πR∫ ∈ "1,Δ됴1 〓
 c⅔

"요
,Δ R

We fiolloㄳ/ the salne Inethod used in the proof of Theoreln 2. 1. For each

θ ∈ ℓ
"矢

.Δ R, let θ' ∈ Π≠ be the unique elelnent such that πRθ ' 〓 θ and ‖θ에ㅡ 〓
‖께 R:AR· Since ∫ is supported on R, regarding it as πR∫, we de요 ne a linear

fUnctional on ι
"ι

‘

'R, '4R bY
(4.7) θ ㅏ→ - 〈∫, θ'〉 +·

Then l- 〈∫ , θ'〉ㅢ ≤ ‖/l - ‖θ에+ 〓
 
‖케 — ‖glIR,AR·  This shows

"↑
,Δ됴l and

that πR∫ ∈ ZA. AR 〓
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By (4.5):

conclude

I2 (R) is
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‖πR/ll뇨 .ΔR ≤ ‖케—·
、、
˘e already know that fbr πR∫ ∈ ∈ℓ A,AR, ‖πR川 뇨,AR 〓

 
‖/ll -. Thus we

that ITA .늰
R 〓

 πR (F0 (Rε )). The Iast assertion fbllows by noticing that
dense in "‘ k ⌒ㅓ흇

I and ‖πReㅙ R,Δㅈ
1 〓 

‖eχ ‖- fbr each χ ∈ R.□

ProqIr qIr TI7eorel’ 7 2.3. First 've notice that I2(R) is dense in ˛
""矢

,BR and in

'“
k, Δ퓻1 respectively in the corresponding norIIls˚  By (2. 13), 、、Te see that fbr a11

∫ ∈ I2(R),

(4.9) (∫
, Bㅈ Y)0 ≤ (∫ , 

ΔR∫ )0,

o r

(4. 10)‖ 케R, BR ≤ ‖/lIR, Δ됴1

This sho、、
ˇ
s that

(4. 11) θ

"矢

,BR ⊃ M矢
,Δ됴

1 〓 ∈ℓ A,AR

By the dualit}˙  characterization theoreΠ
1s, ThoereII1 2. l and 2.2, ㄲTe get the in¨

clusions stated in the theoreII1. The last statelnent has been already sho、 ∼Tn in

Proposition 4. 1 .□

5● Open probleⅢ : the Shauder basis

Since {eλ·
}λ ∈̇E is a basis fbr "⅞  〓 I2(E) and -#b is dense in ˛

""˛

-, by GraΠ 1—

Schl— rlidt orthogonalization procedure, we can construct an orthonorlnal basis fbr

˛
""˛

- flom the set {ex}χ ∈E. Now let {Λ η}∶堊l be any increasing sequence of nnite
subsets of E such that ∪庄L1 Λκ 〓 E. Let ∫ ≡ (∫ (x))λ ∈̇E ∈ I— be any element

;塊표 : each N 

∈ N ㏏ 舟 — Σⅲ N ∫⒳
', 

∈ ∠ . The followi㎎  k an open

open ProbleⅡ1: In the above, is the fbllowing true or not?

(5.1) #또
 /ⅳ

 〓 ∫ (:in I1).

Silnilarly, fbr θ ≡ (θ (χ
))χ ∈E ∈ 4, we denne θ

'- :〓

 ∑λ∈ΛN θ(χ)eχ ∈ Zㅏ and also
ask whether the lilnit

(5.2)√ 브ι θ
'ˇ

 〓 θ (in 4)

holds or not.

For these problelns '、 ě ∏lake solne renlarks. First, if it is true, then it says
that {ex}χ ∈E is a Shauder basis f:br 」¾

‘

1 (and also fbr Zㅏ ). Second, it is we11
knoㄳTn that (see [1; TheoreII1 工. p 362])

(5.3) ⌒Iη  ̆‖̨/;,ㅔΛ
'˙

.BΛN 〓 ‖/ll- ˚
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Though the norlns ‖/ⅳ‖ΛN,BΛN increases as N increases, we don’
t know any

II10notonicity or convergence fbr the sequence {‖  '訌—}. Finally, as Inentioned
in the introduction, a restriction of a vector in a RKI{S lnay not belong to the

original space˚  For instance, let A be the operator in [4, Exalnple 2.5] denned

by Δ :〓 B*B on I2(E) with E :〓  N, and B is de且ned by

Beκ 〓

κ 〓 1,

+ eΠ ), κ ≥ 2,

and by a linear extension. Let 4 be the RKHS with kernel A(χ , ν). We
can show that e1 쓴 Mㅏ . Thus fbr any κ ≥ l and Λ ⊂⊂ E with 1 ∈ Λ we have

ιΛ((Δ eκ )Λ ) 쑤 J¾

"ζ

ㅏ, though Δeη ∈ Zㅏ . In other words, the questions (5. 1) or (5.2)

Inight be Hleaningless fbr solne cases. But under our hypothesis (H), tㄲ
Γo ques¨

tions are we11 posed and surely they are interesting.

Aελ,κowI"〃υ
'?η

eκιδ. The author thanks the anonylnous referee for carefU1
reading of the paper and giving valuable coIIIIylents.
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