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QUANTUM MARKOV CHAINS ASSOCIATED WITH

UNITARY QUANTUM WALKS

CHUL KI KO AND HYUN JAE YOO*

Dedicated to Professor Leonard Gross on the occasion of his 88th birthday

Abstract. In this paper we discuss the quantum Markov chains of unitary

quantum walks. The construction of the quantum Markov chain associated
with a unitary quantum walk serves as a good example in the view point

of quantum Markov chains. On the other hand, the method of quantum

Markov chain provides a tool for the investigation of dynamical properties
of the unitary quantum walks. We discuss the reducibility/irreducibility and

the recurrence/transience properties. Comparing with the results known in

other literature and in classical random walks, we will see some similarity as
well as some differences.

1. Introduction

The purpose of this paper is to construct quantum Markov chains (QMCs here
after) associated with unitary quantum walks (UQWs shortly). The aim is two
folds: one is to give a nontrivial example of QMCs and the other is to investigate
the dynamical properties of the UQWs.

The QMC has been introduced by Accardi [1, 2, 3] and found many applications
[4, 5, 6, 7, 9, 8, 10, 11]. Recently, Dhahri and Mukhamedov, and Dhahri and
the present authors constructed QMCs associated with open quantum random
walks (OQRWs shortly) and investigated recurrence and accessibility [19], and
reducibility and irreducibility of the OQRWs [18]. So, it is natural to ask whether
it is possible to investigate the dynamical properties of UQWs via QMCs. The
paper answers this question.

The UQWs, which will be briefly introduced in the next section, was developed
for some applications in quantum computation, e.g., to speed up the search al-
gorithm, see [22] and references therein. The most big difference between UQWs
and OQRWs is, to the best knowledge of the authors, that after one evolution,
the UQW adds up the probability amplitudes, on the other hand the OQRW adds
up the probability densities. This difference results apparently in the limits of the
distributions. The UQWs reveal the Konno distribution [26, 27], but the OQRWs
show the central limit theorems [13, 23]. This difference also requires us to use a
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different method to construct the QMCs for the UQWs from the construction of
QMCs for OQRWs. Anyway, we have successively constructed the QMCs associ-
ated with the UQWs in the sense that when the constructed QMC is restricted to
the local observables at time n it recovers the original dynamics of the UQW at
time n (see eq. (3.16)). Then we can investigate the dynamical properties of the
UQWs in the scheme of the QMCs.

The paper is organized as follows. In section 2 we introduce the UQWs. In
section 3, we construct the QMCs for the UQWs. In section 4, we investigate the
reducibility and the irreducibility of the UQWs by QMCs. In the final section we
discuss the recurrence and transience of UQWs using the associated QMCs. We
will see in particular that the recurrence/transience property of UQWs is typically
different from that of the classical random walks.

2. Unitary Quantum Walks

2.1. Evolution of states. We briefly introduce the 1-dimensional unitary quan-
tum walks (UQWs hereafter). For the details we refer to the references [12, 20,
22, 24, 25, 26, 27]. A quantum particle has an intrinsic degree of freedom, called
“chirality”, which is represented by a 2-dimensional vector: we represent them in

C2 and call the vectors

[
1
0

]
and

[
0
1

]
the left and right chirality, respectively. Let

h := l2(Z,C2) be the Hilbert space of sequences of C2-vectors. h consists of the

vectors ψ = (ψi)i∈Z, where ψi =

[
ψi(1)
ψi(2)

]
∈ C2 satisfies

∑
i∈Z ‖ψi‖2 <∞. We can

think of h = ⊕i∈ZC2 by denoting ψ = ⊕i∈Zψi. A physical meaning of the state ψ
is as follows. A measurement of the position of a quantum particle in the state ψ
will result in the position i with a probability ‖ψi‖2. A UQW is an evolution of
pure states on h. More precisely, let

U =

[
a b
c d

]
=

[
a b
0 0

]
+

[
0 0
c d

]
=: P +Q (2.1)

be a unitary matrix. Given a pure state, i.e., a unit vector ψ = ⊕i∈Zψi ∈ h, the
UQW operates on ψ giving a new pure state defined by

U(ψ) := ⊕i∈Z(Pψi+1 +Qψi−1) ∈ h. (2.2)

2.2. UQW: a completely positive map on the pure states. In this sub-
section, we will see the UQWs in a slightly different point of view. Given a unit
vector ψ = ⊕i∈Zψi ∈ h, we will also look at it as a pure state ρψ := |ψ〉〈ψ| on
B(h), the space of all bounded linear operators on h. Let Pi be the projection onto
the ith position space, defined by

Pi(· · · ⊕ ψi−1 ⊕ ψi ⊕ ψi+1 ⊕ · · · ) = · · · ⊕ 0⊕ ψi ⊕ 0⊕ · · · .

If we measure the position of the particle in the state ψ, it will result in the site
i ∈ Z with a probability

Tr(ρψPi) = Tr(|ψ〉〈ψ|Pi) = 〈ψ, Piψ〉 = ‖ψi‖2.
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We define the operators P̃ and Q̃ in B(h) by

P̃ (ξ) = ⊕i∈Z(Pξi+1), Q̃(ξ) = ⊕i∈Z(Qξi−1), for ξ = ⊕i∈Zξi ∈ h. (2.3)

Let us define Ũ := P̃ + Q̃. The following can be easily checked.

Lemma 2.1. The operator Ũ ∈ B(h) is a unitary operator. In particular, it holds
that (

P̃
)∗
P̃ +

(
Q̃
)∗
Q̃ = I = P̃

(
P̃
)∗

+ Q̃
(
Q̃
)∗
,

and (
Q̃
)∗
P̃ = 0,

(
P̃
)∗
Q̃ = 0, P̃

(
Q̃
)∗

= 0, Q̃
(
P̃
)∗

= 0.

Proposition 2.2. The UQW is a completely positive map on the pure states
defined by

U(|ψ〉〈ψ|) = Ũ |ψ〉〈ψ|(Ũ)∗. (2.4)

Proof. It follows from the definitions (2.2) and (2.3). �

3. Quantum Markov Chains of Unitary Quantum Walks

3.1. Quantum Markov chains. In this section we briefly recall the definition
of the quantum Markov chains [6, 7, 19, 28]. Here we recall the setting used in
[18].

Let Z+ be the set of all nonnegative integers. Let B be a von Neumann sub-
algebra of B(h), the space of all bounded linear operators on a separable Hilbert
space h. For any bounded Λ ⊂ Z+, let

AΛ :=
⊗
i∈Λ

Ai, Ai = B, (3.1)

be the finite tensor product of von Neumann algebras and

A :=
⊗
i∈Z+

Ai (3.2)

be the infinite tensor product of von Neumann algebras [16, 30, 32]. For each
i ∈ Z+, let Ji be the embedding homomorphism

Ji : B ↪→ I0 ⊗ I1 ⊗ · · · ⊗ Ii−1 ⊗ B ⊗ Ii+1 ⊗ · · · =: Ii−1] ⊗ B ⊗ I[i+1

defined by

Ji(a) = Ii−1] ⊗ a⊗ I[i+1, a ∈ B.
For each Λ ⊂ Z+, we identify AΛ as a subalgebra of A. We denote An] the
subalgebra of A, generated by the first (n+ 1) factors, i.e., by the elements of the
form

an] = a0 ⊗ a1 ⊗ · · · ⊗ an ⊗ I[n+1 = J0(a0)J1(a1) · · · Jn(an)

with a0, a1, · · · , an ∈ B.
A bilinear map E from B ⊗ B to B is called a transition expectation if it is

completely positive and sub-Markovian in the sense that [11]

E(I ⊗ I) ≤ I. (3.3)
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Given a (sub-)Markovian transition expectation, one can define a (unique) com-
pletely positive map

Em] : A → Am]. (3.4)

Formally, it is defined for a = a0 ⊗ a1 ⊗ · · · ∈ A as

Em](a) := lim
n→∞

Em](an]), (3.5)

where

Em](an]) := lim
k→∞

[
a0 ⊗ · · · ⊗ am−1 ⊗ E(m)(am ⊗ E(m+1)(am+1 ⊗ · · ·

⊗E(n)(an ⊗ E(n+1)(I ⊗ · · · ⊗ E(n+k)(I ⊗ I)))))
]
. (3.6)

See [1, 2, 3, 11]. For the Markovian transition expectations, the limit in (3.6) is
trivial but for the sub-Markovian transition expectations, however, it is a little
bit delicate to show the existence. In [18], we have shown that for each m ≥ 0,
there exists a (unique) completely positive map Em] in (3.4) defined by (3.5)-(3.6),
which is sub-Markovian.

Suppose that a sequence of transition expectations (E(n))n≥0 and a state φ0 on
B are given. We define a positive definite functional φ on A by

φ(a) := φ0(E0](a)), a ∈ A. (3.7)

Notice that since E0] is sub-Markovian, φ is also sub-Markovian, meaning that
φ(I ⊗ I ⊗ · · · ) ≤ 1.

Definition 3.1. (i) A pair
(
φ0, (E(n))n≥0

)
of a state φ0 on B and a sequence of

transition expectations (E(n))n≥0 is called a Markov pair if the positive definite
functional φ in (3.7) defines a state on A, i.e., it is Markovian in the sense that

φ(I ⊗ I ⊗ · · · ) = 1.

(ii) A Markov pair
(
φ0, (E(n))n≥0

)
, or alternatively the state φ in (3.7) defined by

the pair, is called a nonhomogeneous QMC with initial state φ0. When E(n) = E
for all n, we say that the QMC is homogeneous.

3.2. QMCs associated with UQWs. Let U be a UQW on Z with a defining
unitary matrix U = P + Q in (2.1). We let h := ⊕j∈ZC2 ∼= K ⊗ C2, where K :=

l2(Z), and let B := B(h). Given any initial state ψ(0) ∈ h, let ψ(n) := Un(ψ(0)) be
the state at time n. ψ(n) can be written as

ψ(n) = ⊕j∈Zψ(n)
j or ψ(n) =

∑
j∈Z

ψ
(n)
j ⊗ |j〉.

For any vector 0 6= ξ ∈ C2, we let ξ̂ := ξ/‖ξ‖ be the unit vector in the direction

ξ. For each n ≥ 0, and i, j ∈ Z, let A
(n)
ij and M

(n)
ij be the linear operators on h
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defined as follows:

A
(n)
ij :=

{
|ψ̂(n)
j 〉〈ψ̂

(n)
j | ⊗ |i〉〈j|, ψ

(n)
j 6= 0

0, ψ
(n)
j = 0,

(3.8)

M
(n)
ij :=

{
‖ψ(n+1)

i ‖|ψ̂(n+1)
i 〉〈ψ̂(n)

j | ⊗ |i〉〈j|, ψ
(n)
j 6= 0, ψ

(n+1)
i 6= 0

0, otherwise.
(3.9)

Using these operators, for each n ≥ 0 and i, j ∈ Z, we define also the linear

operators K
(n)
ij on h⊗ h by

K
(n)
ij := A

(n)
ij ⊗M

(n)
ij

∗
. (3.10)

Notice that K
(n)
ij ∈ B ⊗ B for any i, j ∈ Z and n ∈ Z+. Below, Tr1(·) means a

partial trace on B ⊗ B defined by Tr1(a ⊗ b) = Tr(a)b for trace class operators
a⊗ b ∈ B ⊗ B.

Proposition 3.2. It holds that∑
i,j∈Z

Tr1

(
K

(n)
ij K

(n)
ij

∗)
≤ Ih.

Proof. By definition∑
i,j∈Z

Tr1

(
K

(n)
ij K

(n)
ij

∗)
=

∑
j

′∑
i

Tr
(
|ψ̂(n)
j 〉〈ψ̂

(n)
j | ⊗ |i〉〈i|

)
×‖ψ(n+1)

i ‖2|ψ̂(n)
j 〉〈ψ̂

(n)
j | ⊗ |j〉〈j|

=
∑
j

′
|ψ̂(n)
j 〉〈ψ̂

(n)
j | ⊗ |j〉〈j| ≤ Ih.

Here
∑
j
′

means
∑
j:ψ

(n)
j 6=0

and in the last we have used |ψ̂(n)
j 〉〈ψ̂

(n)
j | ≤ IC2 . This

completes the proof. �

Now let us define for each n ≥ 0 and x, y ∈ B,

E(n)(x⊗ y) :=
∑
i,j∈Z

Tr1

(
K

(n)
ij (x⊗ y)K

(n)
ij

∗)
. (3.11)

Then, by Proposition 3.2, the sequence (E(n))n≥0 becomes a (non-homogeneous)
transition expectation.

Lemma 3.3. It holds that

E(n)(x⊗ y) = ψ(n+1)(y)
∑

j:ψ
(n)
j 6=0

〈ψ̂(n)
j , xjψ̂

(n)
j 〉|ψ̂

(n)
j 〉〈ψ̂

(n)
j | ⊗ |j〉〈j|. (3.12)
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Proof. By definition, we see that

E(n)(x⊗ y) =
∑
i,j∈Z

Tr1

(
K

(n)
ij (x⊗ y)K

(n)
ij

∗)
=

∑
j:ψ

(n)
j 6=0

〈ψ̂(n)
j , xjψ̂

(n)
j 〉

∑
i

M
(n)
ij

∗
yM

(n)
ij

= ψ(n+1)(y)
∑

j:ψ
(n)
j 6=0

〈ψ̂(n)
j , xjψ̂

(n)
j 〉|ψ̂

(n)
j 〉〈ψ̂

(n)
j | ⊗ |j〉〈j|.

The proof is completed. �

Remark 3.4. In the definition of the operators M
(n)
ij in (3.9), or in the definition

of the transition expectation E(n) in the above, the state at time n+ 1 was used.

But, notice that ψ
(n+1)
i = Pψ

(n)
i+1 + Qψ

(n)
i−1. Therefore, we see that the transition

expectation at time n is totally determined by the state at the present, ψ(n), and
the matrices P and Q.

Lemma 3.5. For any n ≥ 0, k ≥ 1, and x ∈ B,

E(n)(x⊗ E(n+1)(I ⊗ · · · ⊗ E(n+k)(I ⊗ I))) = E(n)(x⊗ I).

Proof. First we show that for any n ≥ 0,

E(n)(I ⊗ E(n+1)(I ⊗ I)) = E(n)(I ⊗ I).

In fact, by (3.12),

E(n+1)(I ⊗ I) =
∑

j:ψ
(n+1)
j 6=0

|ψ̂(n+1)
j 〉〈ψ̂(n+1)

j | ⊗ |j〉〈j|.

Thus, by again (3.12),

E(n)(I ⊗ E(n+1)(I ⊗ I)) = ψ(n+1)
( ∑
l:ψ

(n+1)
l 6=0

|ψ̂(n+1)
l 〉〈ψ̂(n+1)

l | ⊗ |l〉〈l|
)

×
∑

j:ψ
(n)
j 6=0

|ψ̂(n)
j 〉〈ψ̂

(n)
j | ⊗ |j〉〈j|

=
∑

j:ψ
(n)
j 6=0

|ψ̂(n)
j 〉〈ψ̂

(n)
j | ⊗ |j〉〈j| = E

(n)(I ⊗ I).
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From this we see that

E(n)(x⊗ E(n+1)(I ⊗ · · · ⊗ E(n+k)(I ⊗ I)))

= E(n)(x⊗ E(n+1)(I × I))

= E(n)
(
x⊗

( ∑
l:ψ

(n+1)
l 6=0

|ψ̂(n+1)
l 〉〈ψ̂(n+1)

l | ⊗ |l〉〈l|
))

= ψ(n+1)
( ∑
l:ψ

(n+1)
l 6=0

|ψ̂(n+1)
l 〉〈ψ̂(n+1)

l | ⊗ |l〉〈l|
)

×
∑

j:ψ
(n)
j 6=0

〈ψ̂(n)
j , xjψ̂

(n)
j 〉|ψ̂

(n)
j 〉〈ψ̂

(n)
j | ⊗ |j〉〈j|

=
∑

j:ψ
(n)
j 6=0

〈ψ̂(n)
j , xjψ̂

(n)
j 〉|ψ̂

(n)
j 〉〈ψ̂

(n)
j | ⊗ |j〉〈j| = E

(n)(x⊗ I).

The proof is completed. �

By the consistency given in Lemma 3.5, we can define for an] = a0⊗ · · · ⊗ an⊗
I[n+1 ∈ An], the completely positive map

E0](an]) := E(0)(a0 ⊗ E(1)(a1 ⊗ · · · ⊗ E(n)(an ⊗ I))), (3.13)

and for a = a0 ⊗ a1 ⊗ · · · ∈ A,

E0](a) := lim
n→∞

E0](an]). (3.14)

Proposition 3.6. For an] = a0 ⊗ · · · ⊗ an ⊗ I[n+1 ∈ An],

E0](an]) =

n∏
k=1

ψ(k)(ak)
∑

i0:ψ
(0)
i0
6=0

〈ψ̂(0)
i0
, a0(i0)ψ̂

(0)
i0
〉|ψ̂(0)

i0
〉〈ψ̂(0)

i0
| ⊗ |i0〉〈i0|.

Therefore,

ψ(0)(E0](an])) =

n∏
k=0

ψ(k)(ak).

Proof. This follows from (3.13) and (3.12). �

Let us define a functional ϕ : A → C by

ϕ(a) := ψ(0)(E0](a)). (3.15)

Corollary 3.7. The functional ϕ in (3.15) is a QMC. In other words, the pair
(ψ(0), (E(n))n≥0) is a Markov pair.

Proof. From Proposition 3.6, it follows that

ϕ(I ⊗ I ⊗ · · · ⊗ I ⊗ nth
x ⊗ I[n+1) = ψ(n)(x). (3.16)

In particular, we have ϕ(I⊗I⊗· · · ) = 1. Therefore, ϕ, or the pair (ψ(0), (E(n))n≥0),
is a QMC. �
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In the sequel, we write ϕ = (ψ(0), (E(n))n≥0) and call it a QMC associated with

the UQW with initial state ψ(0).

4. Reducibility and Irreducibility of QMCs Associated With UQWs

4.1. Definition and properties. For a projection p ∈ B, we let

p[n := I ⊗ · · · I ⊗ nth
p ⊗ p⊗ · · · .

Let us define

P0 := {p[n : p, a projection in B, n ≥ 0}.
As in [18], we define the reducibility and irreducibility of the QMC as follows.

Definition 4.1. The QMC ϕ = (ψ(0), (E(n))n≥0) associated with a UQW is called
reducible if there is a nontrivial projection p[n0

∈ P0 such that

E0](p[n0
ap[n0

) = E0](a) for all a ∈ A.

Otherwise, it is called irreducible.

The following property can be shown as in [18, Theorem 3.7].

Lemma 4.2. The QMC ϕ = (ψ(0), (E(n))n≥0) associated with a UQW is reducible
if and only if there is a p[n0

∈ P0 such that E0](p[n0
) = I.

Theorem 4.3. The QMC ϕ = (ψ(0), (E(n))n≥0) associated with a UQW is re-

ducible if and only if there is a projection p ∈ B and n0 ∈ N such that ψ(n)(p) = 1
for all n ≥ n0.

Proof. We may assume n0 ≥ 1. Notice that by Proposition 3.6,

E0](I ⊗ I ⊗ · · · ) =
∑

i0:ψ
(0)
i0
6=0

|ψ̂(0)
i0
〉〈ψ̂(0)

i0
| ⊗ |i0〉〈i0|,

and

E0](p[n0,n]) =

n∏
k=n0

ψ(k)(p)
∑

i0:ψ
(0)
i0
6=0

|ψ̂(0)
i0
〉〈ψ̂(0)

i0
| ⊗ |i0〉〈i0|.

From this and the fact that E0](p[n0
) = limn→∞E0](p[n0,n]), we see that E0](p[n0

)

= E0](I ⊗ I ⊗ · · · ) if and only if ψ(n)(p) = 1 for all n ≥ n0. This completes the
proof. �

Example 4.4 (Reducible UQW). Let us consider the unitary matrix

U =

[
0 1
1 0

]
.

It is easy to check that U2(ψ) = ψ for any state ψ ∈ h. Moreover, if ψ = (ψi)i∈Z
is supported in Λ := [−n0, n0], in the sense that ψi = 0 for i /∈ Λ, then U(ψ) is
supported in Λ := [−(n0 + 1), n0 + 1]. Now suppose that the initial state ψ(0) is
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locally supported, say supp(ψ(0)) ⊂ Λ = [−n0, n0]. Let q ∈ B(H) be any nontrivial
projection and define a projection p = ⊕i∈Zpi by

pi =

{
I, i ∈ Λ,

q, i /∈ Λ.

By the above observation, we see that ψ(n)(p) = 1 for all n ≥ 0. By Theorem 4.3,
the QMC for this UQW is reducible.

4.2. A sufficient condition for the irreducibility. In this subsection, we
provide with a meaningful class of irreducible QMCs for UQWs.

Let U be the UQW with a generating unitary matrix U in (2.1), and let ϕ =
(ψ(0), (E(n))n≥0) be the QMC associated with U .

Theorem 4.5. Suppose that the unitary matrix U in (2.1) has nonzero compo-
nents: abcd 6= 0. Then, for any initial state ψ(0) supported on the origin, the QMC
ϕ = (ψ(0), (E(n))n≥0) associated with U is irreducible.

The main ingredient of the proof is to use the path-wise computation of the
probability density of the UQW developed by Konno [26, 27]. Let φ = [α, β]T ∈ C2

be a unit vector and let

ψ(0) := φ⊗ |0〉 ∈ h

be the initial state. As in [27], in addition to the matrices P and Q in (2.1), let
us define

R :=

[
c d
0 0

]
, S :=

[
0 0
a b

]
.

Konno introduced a transition kernel to determine the state at any time and any
position in the following way. The state at time n and at the position k ∈ Z is

ψ
(n)
k ≡ ψ(n)

k (φ), which can be written by using the transition kernel:

ψ
(n)
k (φ) = Ξ(l,m)φ, (4.1)

where l,m ∈ N are such that l +m = n and −l +m = k, and

Ξ(l,m) =
∑

lj ,mj≥0;
l1+···+ln=l,m1+···+mn=m

P l1Qm1 · · ·P lnQmn . (4.2)

Konno has concretely computed the kernel [27, Lemma 2]:

Lemma 4.6. Suppose abcd 6= 0. Then, for l ∧m ≥ 1,

Ξ(l,m)

= alam∆m
l∧m∑
r=1

(
− |b|

2

|a|2

)r (
l − 1

r − 1

)(
m− 1

r − 1

)[
l − r
ar

P +
m− r
∆ar

Q− 1

∆b
R+

1

b
S

]
=: pn(l,m)P + qn(l,m)Q+ rn(l,m)R+ sn(l,m)S, (4.3)

where ∆ := detU .
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Proof of Theorem 4.5. Suppose on the contrary the QMC ϕ = (ψ(0), (E(n))n≥0)

is reducible for some initial state ψ(0) = φ ⊗ |0〉. Then, it means that there is
a one-dimensional projection |ξ〉〈ξ| for some unit vector ξ ∈ C2 and a position

k ∈ Z such that |ξ〉〈ξ|ψ(n)
k = ψ

(n)
k for all n ≥ n0 for some n0, or equivalently,

there is a constant c ∈ C such that the vector ψ
(n)
k = [ψ

(n)
k (1), ψ

(n)
k (2)]T satisfies

ψ
(n)
k (1) = cψ

(n)
k (2) for all n ≥ n0. Assume first that φ = [a, b]T . Then, for l,m ∈ N

such that l +m = n and −l +m = k, since
〈[c

d

]
,

[
a
b

]〉
= 0, we have

ψ
(n)
k = Ξ(l,m)φ =

[
pn(l,m)
sn(l,m)

]
, (4.4)

with pn(l,m) and sn(l,m) defined in (4.3). Following the notations in [27], let us
define for ν, µ > −1 and x ∈ [−1, 1],

P ν,µn (x) :=
Γ(n+ ν + 1)

Γ(n+ 1)Γ(ν + 1)
2F1(−n, n+ ν + µ+ 1; ν + 1; (1− x)/2),

where Γ(z) is the Gamma function and 2F1(a, b; c; z) is the hypergeometric func-
tion:

2F1(a, b; c; z) =

∞∑
n=0

Γ(a+ n)

Γ(a)

Γ(b+ n)

Γ(b)

Γ(c)

Γ(c+ n)
· z

n

n!
.

Define for i = 0, 1,

ρn,k,i := P i,n−2k
k−1 (2|a|2 − 1). (4.5)

Then Konno has obtained the following relations:

k∑
r=1

(
− |b|

2

|a|2

)r−1
1

r

(
k − 1

r − 1

)(
n− k − 1

r − 1

)
=

1

k
|a|−2(k−1)ρn,k,1 (4.6)

k∑
r=1

(
− |b|

2

|a|2

)r−1(
k − 1

r − 1

)(
n− k − 1

r − 1

)
= |a|−2(k−1)ρn,k,0. (4.7)

(see [27, page 1190].) Without loss of generality we may assume k ≥ 0. Then,
from (4.3), (4.4), (4.6) and (4.7), we see that

pn(l,m)

sn(l,m)
=
b

a

(
ρn,l,1
ρn,l,0

− 1

)
.

Therefore, pn(l,m)
sn(l,m) = const. if and only if

ρn,l,1

ρn,l,0
= const., but the latter is far

from the case by definition of ρn,k,i’s in (4.5). We conclude that the QMC ϕ =

(ψ(0), (E(n))n≥0) is not reducible. The same conclusion holds if we assume φ =
[c, d]T . Finally, for any unit vector φ = [α, β]T ∈ C2, since {[a, b]T , [c, d]T } is a
basis of C2, we can write [

α
β

]
= c1

[
a
b

]
+ c2

[
c
d

]
,

for some constants c1 and c2. Applying the above arguments, we see that the
QMC (ψ(0), (E(n))n≥0) can not be reducible with ψ(0) = φ ⊗ |0〉. This completes
the proof. �
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5. Recurrence of QMCs Associated With UQWs

5.1. Recurrence and transience. We recall the definition of stopping times
from [7].

Given a projection e ∈ B, the stopping times associated with e are defined as
follows.

τ0 = e⊗ I[1 = J0(e),

τ1 = e⊥ ⊗ e⊗ I[2 = J0(e⊥)J1(e),

· · ·
τk = (e⊥)⊗k ⊗ e⊗ I[k+1 = J0(e⊥) · · · Jk−1(e⊥)Jk(e). (5.1)

We also define

τn∞ := (e⊥)⊗(n+1) ⊗ I[n+1 (5.2)

τ∞ := lim
n→∞

τn∞ = ⊗Z+
e⊥. (5.3)

In this subsection we discuss the recurrence and transience of the QMCs asso-
ciated with UQWs. We start with a definition following [7].

Definition 5.1. Let ϕ = (ψ(0), (E(n))n≥0) be a QMC associated with a UQW. A

projection e ∈ B with ψ(0)(e) > 0 is called recurrent if∑
n≥1

ϕ
(
e⊗

(
⊗e⊥

)(n−1) ⊗ e⊗ I[n+1

)
= ψ(0)(e). (5.4)

A projection e is called transient if it is not recurrent.

Remark 5.2. The above definition of recurrence was named as the ϕ-recurrence in
[19].

Proposition 5.3. Let ϕ = (ψ(0), (En)n≥0) be the QMC associated with the UQW

with initial state ψ(0). Then a projection e with ψ(0)(e) > 0 is recurrent if and
only if

lim
n→∞

ϕ
(
e⊗ (e⊥)⊗n ⊗ I[n+1

)
= 0.

Proof. We see that

E0](e⊗ I[1) = E0](e⊗ e⊗ I[2) + E0](e⊗ e⊥ ⊗ I[2)

= E0](e⊗ e⊗ I[2) + E0](e⊗ e⊥ ⊗ e⊗ I[3) + E0](e⊗ e⊥ ⊗ e⊥ ⊗ I[3)

= · · ·

=

n∑
k=1

E0](e⊗ (e⊥)⊗(k−1))⊗ e⊗ I[k+1 + E0](e⊗ (e⊥)⊗n ⊗ I[n+1).

Taking the expectation w.r.t. the initial state ψ(0) on both sides and letting n go
to infinity we get

ψ(0)(e) = ψ(0)
(
E0]

[∑
n≥1

e⊗
(
⊗e⊥

)(n−1) ⊗ e⊗ I[n+1

])
+ lim
n→∞

ψ(0)
(
E0](e⊗ (e⊥)⊗n ⊗ I[n+1)

)
.
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Noticing ϕ(·) = ψ(0)(E0](·)), we get the result. �

Theorem 5.4. Let e ∈ B be a projection with ψ(0)(e) > 0. Then the following
conditions are equivalent.

(i) e is recurrent.
(ii)

∏∞
n=1 ψ

(n)(e⊥) = 0. (Or, equivalently
∑∞
n=1 ψ

(n)(e) =∞).

Proof. By Proposition 5.3, using the computation in Proposition 3.6, e is recurrent
if and only if (

lim
n→∞

n∏
k=1

ψ(k)(e⊥)

)
ψ(0)(e) = 0.

Since ψ(0)(e) > 0, the result follows. �

5.2. SJK-recurrence. In [17], the authors discussed some other type of recur-
rences for the unitary and open quantum walks, namely the monitored recurrence
and SJK-recurrence. The former is based on the monitoring procedure introduced
in [15, 21] and the latter uses the concept of Pólya number and is named after
the work of Štefaňák, Jex, and Kiss [31]. In this subsection, we compare the SJK-
recurrence and the concept introduced here by QMCs. For it we first introduce the
SJK-recurrence of UQWs following [17, 31]. Let |ψ〉 ∈ C2 be a unit vector. Start-
ing from the initial state |ψ〉 ⊗ |0〉 ∈ h, let p0(n) ≡ p0(n;ψ) denote the probability
of reaching site |0〉 at time n. Let

pk :=

k∏
n=1

[1− p0(n)]

denote the probability of not finding the particle at the origin in the first k trials.
We define

p ≡ p(ψ) :=

∞∏
n=1

[1− p0(n)].

The number p ≡ p(ψ) := 1− p is called the Pólya number of the UQW.

Definition 5.5. We say that a UQW is SJK-recurrent with respect to the state
ψ if p = p(ψ) = 1.

Proposition 5.6. Let ψ ∈ C2 be a unit vector. Then a UQW is SJK-recurrent
with respect to the state ψ if and only if the projection e := |ψ〉〈ψ| ⊗ |0〉〈0| ∈ B is
recurrent for the QMC (ψ(0), (E(n))n≥0) associated with the UQW, where ψ(0) is
the initial state |ψ〉 ⊗ |0〉 ∈ h.

Proof. Let e be the projection given in the statement of the proposition. By
Theorem 5.4, e is recurrent if and only if

∞∏
n=1

ψ(n)(e⊥) = 0. (5.5)

On the other hand, we see that p0(n) = p0(n;ψ) = ψ(n)(e), and hence (5.5) is
equivalent to p = p(ψ) = 0. This completes the proof. �
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5.3. Example: Hadamard walk. In this subsection we discuss the recurrence
and transience problem for the concrete model of Hadamard walk. The generating
unitary matrix U in (2.1) for the Hadamard walk, denoted by H, is given by

H =
1√
2

[
1 1
1 −1

]
. (5.6)

Proposition 5.7. The projection e := I ⊗ |0〉〈0| ∈ B is recurrent for the QMC
associated with the Hadamard walk starting from the origin.

For the proof, we will use the Fourier transform for the quantum walk, which
was developed in several literature (see [24] and references therein).

For any vector ψ = (ψx)x∈Z ∈ h = l2(Z,C2), its Fourier transform is defined by

ψ̂(k) :=
∑
x∈Z

eikxψx, k ∈ [0, 2π].

For the generating unitary matrix U in (2.1), define

U(k) :=

[
e−ika e−ikb
eikc eikd

]
.

Then the evolution of the quantum walk in the Fourier transform space is given
by ([24, eq. (2.16)])

ψ̂(n)(k) = U(k)nψ̂(0)(k). (5.7)

Let γ(k) be the function such that

cos γ(k) = |a| cos k, k ∈ [0, 2π],

and θ1, θ2 be the phases of a and b:

a = |a|eiθ1 , b = |b|eiθ2 .

Then U(k) is diagonalized as (see [24])

U(k) = S(k − θ1)

[
eiγ(k−θ1) 0

0 e−iγ(k−θ1)

]
S(k − θ1)∗,

where the unitary matrix S(k) is given by

S(k) =

 1√
1+|α+(k)|2

1√
1+|α−(k)|2

α+(k)√
1+|α+(k)|2

α−(k)√
1+|α−(k)|2


with

α±(k) = iei(k+θ1−θ2)

(
|a|/|b| sin k ±

√
1 + (|a|/|b| sin k)

2

)
.

Finally we state so called the method of stationary phase:

Lemma 5.8. ([14, p220]) Suppose that f ∈ C[a, b] and α ∈ C2[a, b] with α real.
Consider the integral of the form:

I(n) :=

∫ b

a

exp{inα(t)}f(t)dt. (5.8)
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Suppose further that α′(c) = 0 in a unique point c ∈ [a, b] and α′′(c) 6= 0. Then as
n→∞, we have the asymptotic behavior of I(n):

I(n) = exp{inα(c)}f(c)

√
2

n|α′′(c)|
exp

{
iπµ

4

}
+ o(n−1/2), (5.9)

where µ = signα′′(c).

Proof of Proposition 5.7. For the Hadamard walk with U = H in (5.6), we have
θ1 = θ2 = 0 and γ(k) = cos−1( 1√

2
cos k). The function γ(k) satisfies γ′(k) = 0 at

two points k = 0 ≡ 2π and k = π. Moreover, S(k) is continuous and γ′′(0) = 1
and γ′′(π) = −1. Therefore, by (5.7) and Lemma 5.8, we see that for any x ∈ Z,
the vector

ψ(n)
x =

1

2π

∫ 2π

0

e−ixkψ̂(n)(k)dk

has its components of order 1/
√
n when n is large. So, we have

∑∞
n=1 ψ

(n)(e) =∑∞
n=1 ‖ψ

(n)
0 ‖2 =∞, and hence e is recurrent by Theorem 5.4. �

Remark 5.9. Following the same method of the proof of Proposition 5.7, the state-
ment of Proposition 5.7 can be extended to the general walk with unitary matrix
U in (2.1) such that abcd 6= 0.

5.4. Example: multi-dimensional walk. In this subsection we discuss the re-
currence/transience for the QMC associated with the multi-dimensional UQWs.
As we have seen in the previous subsection, both the classical and (unitary)
quantum walks are recurrent for 1-dimensional walks. However, for the multi-
dimensional walks, we will see a big difference between the quantum walks and
the classical walks. We start with the definition of multi-dimensional UQWs and
their Fourier transforms.

Let d ≥ 1 be any integer and we consider UQWs on Zd. Let U be a 2d × 2d

unitary matrix and for i = 1, · · · , d, let E
(±)
i be the rank one projections defined

by

E
(−)
i (l,m) =

{
1, for (l,m) = (2i− 1, 2i− 1)

0, otherwise
,

E
(+)
i (l,m) =

{
1, for (l,m) = (2i, 2i)

0, otherwise
.

Define

U
(±)
i := E

(±)
i U, i = 1, · · · , d. (5.10)

The d-dimensional UQW is an evolution on h = l2(Zd,C2d) defined by

ψ(n+1)
x =

d∑
i=1

(
U

(−)
i (Tiψ

(n))x + U
(+)
i (T ∗i ψ

(n))x

)
, x ∈ Zd, (5.11)

where Ti, i = 1, · · · , d is the translation in the ith axis:

(Tiψ)x = ψx+ei
, (5.12)
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with ei the unit vector in the ith axis. As in the 1-dimensional walk, we can
represent the walk in Fourier transform space:

ψ̂(n)(k) = U(k)nψ̂(0)(k), k = (k1, · · · , kd) ∈ [0, 2π]d, (5.13)

where U(k) is the unitary matrix given by

U(k) =

d∑
j=1

(
e−ikjE

(−)
j + eikjE

(+)
j

)
U (5.14)

=


e−ik1

eik1 0
. . .

0 e−ikd

eikd

U.
Let

U(k) = S(k)



eiγ
(+)
1 (k)

eiγ
(−)
1 (k) 0

. . .

0 eiγ
(+)
d (k)

eiγ
(−)
d (k)


S(k)∗, (5.15)

be a diagonalization of U(k), where S(k) is a unitary matrix whose columns consist
of the eigenvectors of U(k).

One of the simplest way to construct a d-dimensional walk is to use a block-
diagonal unitary from a 2× 2 unitary matrix, namely to consider a unitary of the
form:

U =


U1 0 · · · 0
0 U2 · · · 0

0 · · ·
. . . 0

0 · · · 0 Ud

 , (5.16)

where U1, · · · , Ud are 2× 2 unitary matrices.
Once a d-dimensional UQW is defined, it is easy to construct the associated

QMC following the method given in Subsection 3.2. We skip, however, the tedious
procedure.

In order to investigate the recurrence/transience problem for multi-dimensional
quantum walks, we will use the multi-dimensional stationary phase method, as in
the 1-dimensional walk. We state it for a reference. Consider the following integral

I(n) =

∫
D

g(x)einf(x)dx, x ∈ Rd, (5.17)

where D ⊂ Rd is a bounded domain and f and g are C∞-functions in D. Then as
n goes to infinity

I(n) ∼ g(x0)|detA|−1/2 exp

{
inf(x0) + i

1

4
πσ

}(
2π

n

)d/2
, (5.18)
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where x0 is a stationary point of f (i.e., ∇f(x0) = 0), A is the Hessian of f defined
by

A =

[
∂2f

∂xi∂xj

]∣∣∣∣
x=x0

,

and σ is the signature of the matrix A, i.e., the number of the positive eigenvalues
minus the number of negative eigenvalues of A. This approximation is valid only
when x0 is nondegenerate (i.e., detA 6= 0) and lies in the interior of D (see [29]
and references therein).

Theorem 5.10. Consider the UQW on Zd, d ≥ 2, defined by (5.11) from a

2d × 2d unitary matrix U . (i) Suppose that γ
(±)
i (k), i = 1, · · · , d, and S(k) in

(5.15) are C∞-functions on (0, 2π)d and at least one of γ
(±)
i (k) has finitely many

isolated nondegenerate stationary points. Then with a certain initial condition, the
projection e := I ⊗ |0〉〈0| is transient for the QMC associated with the UQW. (ii)
Suppose that the generating unitary matrix U is of the block diagonal form as in
(5.16), where the components of Ui, i = 1, · · · , d, are all non-zero. Then, for all
d ≥ 2 (and hence for all d ≥ 1), the projection e := I ⊗ |0〉〈0| is recurrent for the
associated QMC.

Proof. (i) For e := I ⊗ |0〉〈0|, ψ(n)(e) = ‖ψ(n)
0 ‖2 and

ψ
(n)
0 =

1

(2π)d

∫ 2π

0

ψ̂(n)(k)dk

=
1

(2π)d

∫ 2π

0

U(k)nψ̂(0)(k)dk. (5.19)

Let X(k) ∈ Cd be a normalized eigenvector of U(k) with eigenvalue eiγ(k) such
that γ(k) has finitely many isolated nondegenerate stationary points. We take the

initial state ψ̂(0)(k) := X(k). Then, we get from (5.19)

ψ
(n)
0 =

1

(2π)d

∫ 2π

0

einγ(k)X(k)dk.

By the hypotheses and by using the stationary phase method in (5.17)-(5.18), we

see that ψ
(n)
0 is of order 1/nd/2 when n is large. So,

∑∞
n=1 ‖ψ

(n)
0 ‖2 <∞ for d ≥ 2,

and the conclusion follows.
(ii) If U is of the block diagonal form as in (5.16), the matrices D(k) and S(k)
in (5.15) have also the same block diagonal form. Each block S(k)D(k)nS(k)∗

contains a single variable from k1, · · · , kn and thus by the same method done in

the previous subsection for 1-dimensional walk, we see that ψ
(n)
0 is of order 1/

√
n

no matter how the dimension is. Therefore
∑∞
n=1 ‖ψ

(n)
0 ‖2 =∞ and the conclusion

follows. �
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Example 5.11. Let us consider 2-dimensional Grover walk whose generating uni-
tary matrix is

U =
1

2


−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

 . (5.20)

Then the corresponding unitary matrix

U(k1, k2) :=
1

2


−e−ik1 e−ik1 e−ik1 e−ik1

eik1 −eik1 eik1 eik1

e−ik2 e−ik2 −e−ik2 e−ik2

eik2 eik2 eik2 −eik2


has the eigenvalues {1, −1, eiγ(k1,k2), e−iγ(k1,k2)} and the corresponding orthonor-
mal (in C4) eigenvectors:{

c(k1, k2)

[
1

1 + ei(γ+k1)
,

1

1 + ei(γ−k1)
,

1

1 + ei(γ+k2)
,

1

1 + ei(γ−k2)

]T}
,

for γ = 0, π, ±γ(k1, k2). Here γ(k1, k2) is defined by

cos γ(k1, k2) =
1

2
(cos k1 + cos k2)

and c(k1, k2) is the normalization constant given by

c(k1, k2) =

√
(1 + cos(γ + k1))(1 + cos(γ + k2))

(1 + cos(γ + k1)) + (1 + cos(γ + k2))
, γ = 0, π, ±γ(k1, k2).

Let us take the initial condition

ψ̂(0)(k1, k2) := c
[
e−ik1 − cos k2, e

ik1 − cos k2, i sin k2,−i sin k2

]T
,

where c is the normalization constant such that ‖ψ̂(0)‖L2([0,2π]2) = 1. When

ψ̂(0)(k1, k2) is expanded in the basis (in C4) consisting of the eigenvectors of
U(k1, k2), it has zero components in the direction of the eigenvectors correspond-
ing to the eigenvalues ±1. By Theorem 5.10, we conclude that the projection
e := I ⊗ |0〉〈0| is transient for the QMC.
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three, Ann. Henri Poincaré 12 (2011), no. 6, 1109–1144.
9. Accardi, L., Mukhamedov, F., and Saburov, M.: On quantum Markov chains on Cayley tree

I: Uniqueness of the associated chain with XY -model on the Cayley tree of order two, Infin.

Dimens. Anal. Quantum Probab. Relat. Top. 14 (2014), no. 03, 443–463.
10. Accardi, L., Mukhamedov, F., and Saburov, M.: On quantum Markov chains on Cayley tree

III: Ising model, J. Stat. Phys. 157 (2014), no. 2, 303–329.
11. Accardi, L. and Watson, G. S.: Quantum random walks. In: Accardi L., von Waldenfels

W. (eds) Quantum Probability and Applications IV. Lecture Notes in Mathematics, 1396,

Springer, Berlin, Heidelberg, 1989.
12. Ambainis, A., Bach, E., Nayak, A., Vishwannath, A., and Watrous, J.: One-dimensional

quantum walks, in: Proceedings of the 33rd Annual ACM Symposium on Theory of Com-

puting 37 (2001).
13. Attal, S., Guillotin-Plantard, N., and Sabot, C.: Central limit theorems for open quantum

random walks and quantum measurement records, Ann. Henri Poincaré 16 (2015), no. 1,
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